Skip to main content

The spread F Experiment (SpreadFEx): Program overview and first results

Abstract

We performed an extensive experimental campaign (the spread F Experiment, or SpreadFEx) from September to November 2005 to attempt to define the role of neutral atmosphere dynamics, specifically wave motions propagating upward from the lower atmosphere, in seeding equatorial spread F and plasma bubbles extending to higher altitudes. Campaign measurements focused on the Brazilian sector and included ground-based optical, radar, digisonde, and GPS measurements at a number of fixed and temporary sites. Related data on convection and plasma bubble structures were also collected by GOES 12 and the GUVI instrument aboard the TIMED satellite. Initial results of our analyses of SpreadFEx and related data indicate 1) extensive gravity wave (GW) activity apparently linked to deep convection predominantly to the west of our measurement sites, 2) the presence of small-scale GWactivity confined to lower altitudes, 3) larger-scaleGWactivity apparently penetrating to much higher altitudes suggested by electron density and TEC fluctuations in the E and F regions, 4) substantial GW amplitudes implied by digisonde electron densities, and 5) apparent direct links of these perturbations in the lower F region to spread F and plasma bubbles extending to much higher altitudes. Related efforts with correlative data are defining 6) the occurrence and locations of deep convection, 7) the spatial and temporal evolutions of plasma bubbles, the 8) 2D (height-resolved) structures of plasma bubbles, and 9) the expected propagation of GWs and tides from the lower atmosphere into the thermosphere and ionosphere.

References

  1. Abdu, M. A., Outstanding problems in the equatrial ionosphere-thermosphere system relevant to spread F, J. Atmos. Sol.-Terr. Phys., 63, 869, 2001.

    Article  Google Scholar 

  2. Abdu, M. A., I. S. Batista, and J. H. A. Sobral, A new aspect of magnetic control of equatorial spread F, J. Geophys. Res., 97, 14,897, 1992.

    Article  Google Scholar 

  3. Abdu, M. A., I. S. Batista, H. Takahashi, J. MacDougall, J. H. Sobral, A. F. Medeiros, and N. B. Trivedi, Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector, J. Geophys. Res., 108(A12), 1449, doi:10.1029/2002JA009721, 2003.

    Article  Google Scholar 

  4. Abdu, M. A., E. A. Kherani, I. S. Batista, E. R. de Paula, and D. C. Fritts, An evaluation of the ESF/bubble irregularity growth conditions under gravity wave influences based on observational data from the SpreadFEx campaign, Ann. Geophys., SpreadFEx special issue, 2008 (submitted).

    Google Scholar 

  5. Aggson, T. L., N. C. Maynard, W. B. Hanson, and L. Saba Jack, Electric field observations of equatorial bubbles, J. Geophys. Res., 97, 2997, 1992.

    Article  Google Scholar 

  6. Anderson, D. N., A. D. Richmond, B. B. Balsley, R. G. Roble, M. A. Biondi, and D. P. Sipler, In situ generation of gravity waves as a possible seeding mechanism for equatorial spread-F, Geophys. Res. Lett., 9, 789–792, 1982.

    Article  Google Scholar 

  7. Basu, B., On the linear theory of equatorial plasma instability: comparison of different descriptions, J. Geophys. Res., 107(A8), doi:10.1029/2001JA000317, 2002.

  8. Batista, I. S. and M. A. Abdu, Ionospheric variability at Brazilian low and equatorial latitudes: comparison between observations and IRI model, Adv. Space Res., 34, 1894–1900, 2004.

    Article  Google Scholar 

  9. Batista, P. P., B. R. Clemesha, A. S. Tokumoto, and L. M. Lima, Structure of the mean winds and tides in the meteor region over Cachoeira Paulista, Brazil (22.7°S,45°W) and its comparison with models, J. At-mos. Sol.-Terr. Phys., 66(6–9), 623–636, 2004.

    Article  Google Scholar 

  10. Batista, I. S., M. A. Abdu, A. J. Carrasco, B. W. Reinisch, E. R. de Paula, and N. J. Schuch, Equatorial spread F and sporadic E-layer connections during the Brazilian Conjugate Point Equatorial Experiment—COPEX, J. Atmos. Sol.-Terr. Phys., 2008 (in press).

    Google Scholar 

  11. Buriti, R. A., W. K. Hocking, P. P. Batista, A. F. Medeiros, and B. R. Clemesha, Observations of equatorial mesospheric winds over Cariri (7.4 S) by a meteor radar and comparison with existing models, Ann. Geophys., 2007 (submitted).

    Google Scholar 

  12. Calais, E. and J. B. Minster, GPS, earthquakes, the ionosphere, and the Space Shuttle, Phys. Earth Planet. Inter., 105(3–4), 167–181, 1998.

    Article  Google Scholar 

  13. Calais, E., J. S. Haase, and J. B. Minster, Detection of ionospheric perturbations using a dense GPS array in Southern California, Geophys. Res. Lett., 30(12), 2003.

  14. de Paula, E. R. and D. L. Hysell, The São Luis 30 MHz coherent scatter ionospheric radar: system description and initial results, Radio Sci., 39, RS1014, doi:10.1029/2003RS002914, 2004.

    Article  Google Scholar 

  15. Dewan, E. M. and R. H. Picard, Mesospheric bores, J. Geophys. Res., 103(D6), 6295–6306, 1998.

    Article  Google Scholar 

  16. Dewan, E. M. and R. H. Picard, On the origin of mesospheric bores, J. Geophys. Res., 106(D3), 2921–2928, 10.1029/2000JD900697, 2001.

    Article  Google Scholar 

  17. Djuth, F. T., M. P. Sulzer, J. H. Elder, and V. B. Wickwar, High-resolution studies of atmosphere-ionosphere coupling at Arecibo Observatory, Puerto Rico, Radio Sci., 32, 2321–2344, 1997.

    Article  Google Scholar 

  18. Djuth, F. T., M. P. Sulzer, S. A. Gonzales, J. D. Mathews, J. H. Elder, and R. L. Walterscheid, A continuum of gravity waves in the Arecibo thermosphere?, Geophys. Res. Lett., 31, doi:10.1029/2003GL019376, 2004.

  19. Fechine, J., A. F. Medeiros, R. A. Buriti, H. Takahashi, and D. Gobbi, Mesospheric bore events in the equatorial middle atmosphere, J. Atmos. Sol-Terr. Phys., 67, 1774–1778, 2005.

    Article  Google Scholar 

  20. Fechine, J., C. M. Wrasse, H. Takahashi, A. F. Medeiros, P. P. Batista, B. R. Clemesha, L. M. Lima, D. Fritts, M. J. Taylor, P. D. Paulet, M. G. Mlynczak, and J. M. Russell, Mesospheric bore event during SpreadsFEx campaign, Ann. Geophys., SpreadFEx special issue, 2008 (submitted).

    Google Scholar 

  21. Fejer, B. G., Natural ionospheric plasma waves, in Modern Ionospheric Science, edited by H. Kohl, R. Rüster, and K. Schlegel, pp. 217–273, Max-Planck Institut für Aeronomie, Lindau, Germany, 1996.

    Google Scholar 

  22. Fejer, B. G., L. Scherliess, and E. R. de Paula, Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F, J. Geophys. Res., 104, 19,859, 1999.

    Article  Google Scholar 

  23. Fritts, D. C. and L. Yuan, An analysis of gravity wave ducting in the atmosphere: Eckart’s resonances in thermal and Doppler ducts, J. Geophys. Res., 94(D15), 18,455–18,466, 1989.

    Article  Google Scholar 

  24. Fritts, D. C. and M. J. Alexander, Gravity dynamics and effects in the middle atmosphere, Rev. Geophys., 41, doi:10.1029/2001RG000106, 2003.

  25. Fritts, D. C. and S. A. Vadas, Gravity wave penetration into the thermosphere: Sensitivity to solar cycle variations and mean winds, Ann. Geo-phys., 2008 (in press).

    Google Scholar 

  26. Fritts, D. C. et al., Overview and summary of the spread F Experiment (SpreadFEx), Ann. Geophys., SpreadFEx special issue, 2008a (in press).

    Google Scholar 

  27. Fritts, D. C. et al., Gravity wave and tidal influences on equatorial spread F based on observations during the spread F Experiment (SpreadFEx), Ann. Geophys., SpreadFEx special issue, 2008b (submitted).

    Google Scholar 

  28. Haerendel, G., J. V. Eccles, and S. Cakir, Theory of modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow, J. Geophys. Res., 97, 1209–1223, 1992.

    Article  Google Scholar 

  29. Heelis, R. A., P. C. Kendall, R. J. Moffett, D. W. Windel, and H. Rishbeth, Electrical coupling of the E and F regions and its effect on F-region drifts and winds, J. Planet. Space Sci., 22, 743, 1974.

    Article  Google Scholar 

  30. Hocke, K. and K. Schlegel, A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982–1995, Ann. Geophys., 14, 917–940, 1996.

    Google Scholar 

  31. Hofmann-Wellenhof, B., Global Positioning System: theory and practice, 355 pp., Springer-Verlag, New York, 1994.

    Google Scholar 

  32. Huang, C. S. and M. C. Kelley, Nonlinear evolution of equatorial spread-F. 1. On the role of plasma instabilities and spatial resonance associated with gravity wave seeding, J. Geophys. Res., 101, 283, 1996a.

    Article  Google Scholar 

  33. Huang, C. S. and M. C. Kelley, Nonlinear evolution of equatorial spread-F. 2. Gravity wave seeding of Rayleigh-Taylor instability, J. Geophys. Res., 101, 293, 1996b.

    Article  Google Scholar 

  34. Huang, C. S. and M. C. Kelley, Nonlinear evolution of equatorial spread-F. 4. Gravity waves, velocity shear, and day-to-day variability, J. Geophys. Res., 101, 24,523, 1996c.

    Google Scholar 

  35. Huang, C. S., M. C. Kelley, and D. L. Hysell, Nonlinear Rayleigh-Taylor instabilities, atmospheric gravity waves, and equatorial spread-F, J. Geophys. Res., 98, 15,631, 1993.

    Article  Google Scholar 

  36. Huang, C. S., J. C. Foster, L. P. Goncharenko, G. D. Reeves, J. L. Chau, K. Yumoto, and K. Kitamura, Variations of low-latitude geomagnetic fiels and Dst index caused by magnetospheric substorms, J. Geophys. Res., 109, A05219, doi:10.1029/2003JA010334, 2004.

    Google Scholar 

  37. Hysell, D. L., Radar imaging of equatorial F region irregularities with maximum entropy interferometry, Radio Sci., 31(6), 1567–1578, 1996.

    Article  Google Scholar 

  38. Hysell, D. L. and J. D. Burcham, Long term studies of equatorial spread F using the JULIA radar at Jicamarca, J. Atmos. Sol.-Terr. Phys., 64, 1531–1543, 2002.

    Article  Google Scholar 

  39. Hysell, D. L. and E. Kudeki, Collisional shear instability in the equatorial F region ionosphere, J. Geophys. Res., 109, A11301, doi:10. 1029/2004JA010636, 2004.

    Article  Google Scholar 

  40. Hysell, D. L., M. C. Kelley, W. E. Swartz, and R. F. Woodman, Seeding and layering of equatorial spread-F, J. Geophys. Res., 95, 17,253, 1990.

    Article  Google Scholar 

  41. Hysell, D. L., J. Chun, and J. L. Chau, Bottom-type scattering layers and equatorial spread F. Ann. Geophys., 22, 4061, 2004.

    Article  Google Scholar 

  42. Hysell, D. L., M. F. Larsen, C. M. Swenson, A. Barjatya, T. F. Wheeler, M. F. Sarango, R. F. Woodman, and Chau, Onset conditions for equatorial spread Fdetermined during EQUIS II, Geophys. Res. Lett., 32, L24104, doi:10.1029/2005GL024743, 2005.

    Article  Google Scholar 

  43. Kamalabadi, F. et al., Electron densities in the lower thermosphere from GUVI 1356 tomographic inversions in support of SpreadFEx, Ann. Geophys., SpreadFEx special issue, 2008 (submitted).

    Google Scholar 

  44. Kelley, M. C., The Earth’s Ionosphere, 487 pp., Academic Press, San Diego, 1989.

    Google Scholar 

  45. Kelley, M. C. and D. L. Hysell, Equatorial spread F and neutral atmospheric turbulence: a review and a comparative anatomy, J. Atmos. Terres. Phys., 53, 695–708, 1991.

    Article  Google Scholar 

  46. Kelley, M. C., M. F. Larsen, C. LaHoz, and J. P. McClure, Gravity wave initiation of equatorial spread F: A case study, J. Geophys. Res., 86, 9087–9100, 1981.

    Article  Google Scholar 

  47. Keskinen, M. J., S. L. Ossakow, and P. K. Chaturvedi, Preliminary report of numerical simulations of intermediate wavelength collisional Rayleigh-Taylor instability in equatorial spread-F, J. Geophys. Res., 85, 1775, 1980.

    Article  Google Scholar 

  48. Keskinen, M. J., S. L. Ossakow, S. Basu, and P. Sultan, Magnetic flux tube integrated evolution of equatorial ionospheric plasma bubbles, J. Geophys. Res., 103, 3957, 1998.

    Article  Google Scholar 

  49. Keskinen, M. J., S. L. Ossakow, and B. G. Fejer, Three-dimensional nonlinear evolution of equatorial ionospheric spread-F bubbles, Geophys. Res. Lett., 30, 1855, doi:10.1029/2003GL017418, 2003.

    Article  Google Scholar 

  50. Kherani, E. A., M. A. Abdu, E. R. de Paula, D. C. Fritts, J. H. A. Sobral, and F. C. de Meneses Jr., The impact of gravity waves rising from convection in the lower atmosphere on the generation and nonlinear evolution of equatorial plasma bubbles, Ann. Geophys., SpreadFEx special issue, 2008 (submitted).

    Google Scholar 

  51. Klostermeyer, J., Nonlinear investigation of the spatial resonance effect in the nighttime equatorial F region, J. Geophys. Res., 83, 3753, 1978.

    Article  Google Scholar 

  52. Kudeki, E., A. Akgiray, M. Milla, J. L. Chau, and D. L. Hysell, Equatorial spread-F initiation: post-sunset vortex, thermospheric winds, gravity waves, J. Atmos. Sol.-Terr. Phys., 69, 2416–2427, 2007.

    Article  Google Scholar 

  53. Kudeki, E. and S. Bhattacharyya, Postsunset vortex in equatorial F-region plasma drifts and implications for bottomside spread F, J. Geophys. Res., 104, 28,163, 1999.

    Article  Google Scholar 

  54. Lane, T. P. and R. D. Sharman, Gravity wave breaking, secondary wave generation, and mixing above deep convection in a three-dimensional cloud model, Geophys. Res. Lett., 33, L23813, doi:10. 1029/2006GL027988, 2006.

    Article  Google Scholar 

  55. Lane, T. P., M. J. Reeder, and T. L. Clark, Numerical modeling of gravity waves generated by deep tropical convection, J. Atmos. Sci., 58, 1249–1274, 2001.

    Article  Google Scholar 

  56. Lane, T. P., R. D. Sharman, T. L. Clark, and H.-M. Hsu, An investigation of turbulence generation mechanisms above deep convection, J. Atmos. Sci., 60, 1297–1321, 2003.

    Article  Google Scholar 

  57. Lanyi, G. E. and T. Roth, A comparison of mapped and measured total ionospheric electron-content using global positioning system and beacon satellite-observations, Radio Sci., 23(4), 483–492, 1988.

    Article  Google Scholar 

  58. Laughman, B., D. C. Fritts, and J. Werne, Numerical simulation of bore generation and morphology in thermal and Doppler ducts, Ann. Geophys., SpreadFEx special issue, 2008 (submitted).

    Google Scholar 

  59. McClure, J. P., W. B. Hanson, and J. F. Hoffman, Plasma bubble and irregularities in the equatorial ionosphere, J. Geophys. Res., 82, 2650, 1977.

    Article  Google Scholar 

  60. McClure, J. P., S. Singh, D. K. Bamgboye, F. S. Johnson, and H. Kil, Occurrence of equatorial F region irregularities: Evidence for tropospheric seeding, J. Geophys. Res., 103, 29,119–29,135, 1998.

    Article  Google Scholar 

  61. Medeiros, A. F, R. A. Buriti, E. A. Machado, H. Takahashi, P. P. Batista, D. Gobbi, and M. J. Taylor, Comparison of gravity wave activity observed by airglow imaging at two different latitudes in Brazil, J. Atmos. Sol.-Terr. Phys., 60, 647–654, 2004.

    Article  Google Scholar 

  62. Medeiros, A. F, J. Fechine, R. A. Buriti, H. Takahashi, C. M. Wrasse, and D. Gobbi, Response of OH, O2, and OI5577 airglow emissions to the mesospheric bore in the equatorial region of Brazil, Adv. Space Res., 35, 1971–1975, 2005.

    Article  Google Scholar 

  63. Mendillo, M. and A. Tyler, The geometry of depleted plasma regions in the equatorial ionosphere, J. Geophys. Res., 88, 5778, 1983.

    Article  Google Scholar 

  64. Meriwether, J., M. Faivre, C. Fesen, P. Sherwood, and O. Veliz, New results on equatirla thermospheric winds and the midnight temperature maximum, Ann. Geophys., 2008 (in press).

    Google Scholar 

  65. Oliver, W. L., Y. Otsuka, M. Sato, T. Takami, and S. Fukao, A climatology of F region gravity wave propagation over the middle and upper atmosphere radar, J. Geophys. Res., 102, 14,499–14,512, 1997.

    Article  Google Scholar 

  66. Ossakow, S. L., Spread-F theories—A review, J. Atmos. Terres. Phys., 43, 437, 1981.

    Article  Google Scholar 

  67. Piani, C., D. Durran, M. J. Alexander, and J. R. Holton, A numerical study of three-dimensional gravity waves triggered by deep tropical convection, J. Atmos. Sci., 57, 3689–3702, 2000.

    Article  Google Scholar 

  68. Prakash, S., Production of electric field perturbations by gravity wave winds in the E region suitable for initiating equatorial spread F, J. Geophys. Res., 104, 10,051–10,069, 1999.

    Article  Google Scholar 

  69. Rodrigues, F. S., E. R. de Paula, M. A. Abdu, A. C. Jardim, K. N. Iyer, P. M. Kintner, and D. L. Hysell, Equatorial spread F irregularity characteristics over São Luis, Brazil, Radio Sci., 39, doi:10.1029/2002RS002826, 2004.

  70. Scannapieco, A. J. and S. L. Ossakow, Nonlinear spread-F, Geophys. Res. Lett., 3, 451, 1976.

    Article  Google Scholar 

  71. Sekar, R. and M. C. Kelley, On the combined effects of vertical shear and zonal electric field patterns on nonlinear equatorial spread F evolution, J. Geophys. Res., 103, 20,735–20,747, 1998.

    Article  Google Scholar 

  72. Sekar, R., R. Suhasini, and R. Raghavarao, Evolution of plasma bubbles in the equatorial F region with different seeding conditions, Geophys. Res. Lett., 22, 885, 1995.

    Article  Google Scholar 

  73. Sentman, D. D., E. M. Wescott, R. H. Picard, J. R. Winick, H. C. Stenbaek-Nielson, E. M. Dewan, D. R. Moudry, F. T. São Sabbas, and M. J. Heavner, Simultaneous observation of mesospheric gravity waves and sprites generated by a Midwestern thunderstorm, J. Atmos. Sol.-Terr. Phys., 65, 537–550, 2003.

    Article  Google Scholar 

  74. Seyler, C. E., Internal waves and undular bores in mesospheric inversion layers, J. Geophys. Res., 110, D09S05, doi:10.1029/2004JD004685, 2005.

    Google Scholar 

  75. Sobral, J. H. A., M. A. Abdu, and I. S. Batista, Airglow studies on the ionosphere dynamics over low latitude in Brazil, Ann. Geophys., 36(2), 199–204, 1980a.

    Google Scholar 

  76. Sobral, J. H. A., M. A. Abdu, I. S. Batista, and C. J. Zamlutti, Association between plasma bubble and airglow disturbances over Brazilian low latitudes, Geophys. Res. Lett., 11(7), 980–982, 1980b.

    Article  Google Scholar 

  77. Sobral, J. A. H., H. Takahashi, M. A. Abdu, M. J. Taylor, H. Sawant, D. C. Santana, D. Gobbi, A. F. de Medeiros, C. J. Zamlutti, N. J. Schuch, and G. L. Borba, Thermospheric F-region travelling disturbances detected at low latitude by an OI (630 nm) imager system, Adv. Space Sci., 27, 1201–1206, 2001.

    Article  Google Scholar 

  78. Sobral, J. H. A, M. A. Abdu, H. Takahashi, M. J. Taylor, E. R. de Paula, C. J. Zamlutti, and G. L. Borba, A study of the ionospheric plasma bubbles climatology over Brazil, based on 22 years (1977–1998) of OI 630 nm airglow observation, J. Atmos. Terr. Phys., 64(12–14), 1517–1524, 2002.

    Article  Google Scholar 

  79. Stolle, C., H. Luhr, M. Rother, and G. Balasis, Magnetic signatures of equatorial spread F as observed by the CHAMP satellite, J. Geophys. Res., 111, A02304, doi:10.1029/2005JA011184, 2006.

    Google Scholar 

  80. Su, S.-Y., C. K. Chao, and C. H. Liu, On monthly/seasonal/longitudinal variations of equatorial irregularity occurrencesand their relationship with the postsunset vertical drift velocities, J. Geophys. Res., 113, A05307, doi:10.1029/2007JA012809, 2008.

    Google Scholar 

  81. Sultan, P. J., Linear theory and modeling of the Rayleigh Taylor instability leading to the occurrence of equatorial spread F, J. Geophys. Res., 101, 26875–26891, 1996.

    Article  Google Scholar 

  82. Swartz, W. E. and R. F. Woodman, Same night observations of spread-F by the Jicamarca Radio Observatory in Peru and CUPRI in Alcantara, Brazil, Geophys. Res. Lett., 25, 17–20, 1998.

    Article  Google Scholar 

  83. Takahashi, H., M. J. Taylor, P.-D. Pautet, A. F. Medeiros, D. Gobbi, C. M. Wrasse, J. Fechine, M. A. Abdu, I. S. Batista, E. Paula, J. H. A. Sobral, D. Arruda, S. Vadas, F. S. Sabbas, and D. Fritts, Simultaneous observation of ionospheric plasma bubbles and mesospheric gravity waves during the SpreadFEx Campaign, Ann. Geophys., SpreadFEx special issue, 2008 (in review).

    Google Scholar 

  84. Taylor, M. J. and M. A. Hapgood, Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emissions, Planet. Space Sci., 36, 975, 1988.

    Article  Google Scholar 

  85. Taylor, M. J., J.-M. Jahn, S. Fukao, and A. Saito, Possible evidence of gravity wave coupling into the mid-latitude F region ionosphere during the SEEK campaign, Geophys. Res. Lett., 25, 1801–1804, 1998.

    Article  Google Scholar 

  86. Taylor, M. J. et al., Gravity waves in the OH airglow layer observed during the SpreadFEx campaign in Brazil, SpreadFEx special issue, Ann. Geophys., 2008 (submitted).

    Google Scholar 

  87. Taylor, M. J., P. D. Pautet, A. F. Medeiros, R. Buriti, J. Fechine, D. C. Fritts, S. Vadas, H. Takahashi, and F. São Sabbas, Characterizing mesospheric gravity waves near the magnetic equator, Brazil during the SpreadFEx campaign, Ann. Geophys., SpreadFEx special issue, 2008 (submitted).

    Google Scholar 

  88. Tsuda, T., M. Nishida, and C. Rocken, A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET), J. Geophys. Res., 105, 7257–7274, 2000.

    Article  Google Scholar 

  89. Tsunoda, R. T., Time evolution and dynamics of equatorial backscatter plumes: 1. Growth phase, J. Geophys. Res., 86, 139–149, 1981.

    Article  Google Scholar 

  90. Tsunoda, R. T., On the enigma of day-to-day variability in equatorial spread F, Geophys. Res. Lett., 32, L08103, doi:10. 1029/2005GL022512, 2005.

    Article  Google Scholar 

  91. Tsunoda, R. T., Day-to-day variability in equatorial spread F: Is there some physics missing?, Geophys. Res. Lett., 33, L16106, doi:10.1029/ 2006GL025956, 2006.

    Article  Google Scholar 

  92. Tsunoda, R. T., Seeding of equatorial plasma bubbles with electric fields from an Es-layer instability, J. Geophys. Res., 112, A06304, doi:10.1029/2006JA012103, 2007.

    Google Scholar 

  93. Vadas, S. L., Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources, J. Geophys. Res., 112, A06305, doi:10.1029/2006JA011845, 2007.

    Google Scholar 

  94. Vadas, S. L. and D. C. Fritts, Gravity wave radiation and mean responses to local body forces in the atmosphere, J. Atmos. Sci., 58, 2249–2279, 2001.

    Article  Google Scholar 

  95. Vadas, S. L. and D. C. Fritts, The importance of spatial variability in the generation of secondary gravity waves from local body forces, Geophys. Res. Lett., 29(20), 10.1029/2002GL015574, 2002.

  96. Vadas, S. L. and D. C. Fritts, Thermospheric responses to gravity waves arising from mesoscale convective complexes, J. Atmos. Sol.-Terr. Phys., 66, 781–804, 2004.

    Article  Google Scholar 

  97. Vadas, S. L. and D. C. Fritts, Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity, J. Geophys. Res., 110, D15103, doi:10.1029/2004JD005574, 2005.

    Article  Google Scholar 

  98. Vadas, S. L. and D. C. Fritts, The influence of increasing temperature and solar variability on gravity wave structure and dissipation in the thermosphere, J. Geophys. Res., TIMED special issue, 111, A10812, doi:10.1029/2005JA011510, 2006.

    Google Scholar 

  99. Vadas, S. L. and D. C. Fritts, Reconstruction of the gravity wave field from convective plumes via ray tracing, Ann. Geophys., SpreadFEx special issue, 2008 (submitted).

    Google Scholar 

  100. Vadas, S. L., D. C. Fritts, and M. J. Alexander, Mechanism for the generation of secondary waves in wave breaking regions, J. Atmos. Sci., 60, 194–214, 2003.

    Article  Google Scholar 

  101. Vadas, S. L., M. J. Taylor, P.-D. Pautet, P. Stamus, D. C. Fritts, F. São Sabbas, and V. Thiago, Convection: The likely source of the medium-scale gravity waves observed in the OH airglow layer near Brasilia, Brazil, during the SpreadFEx campaign, Ann. Geophys., SpreadFEx special issue, 2008 (submitted).

    Google Scholar 

  102. Valladares, C. E., W. B. Hanson, J. P. McClure, and B. L. Cragin, Bottomside sinusoidal irregularities in the equatorial F region, J. Geophys. Res., 88, 8025, 1983.

    Article  Google Scholar 

  103. Woodman, R. F. and C. LaHoz, Radio observations of F-region equatorial irregularities, J. Geophys. Res., 85, 5447, 1976.

    Article  Google Scholar 

  104. Zalesak, S. T. and S. L. Ossakow, Nonlinear equatorial spread F: Spatially large bubbles resulting from large horizontal scale initial perturbations, J. Geophys. Res., 85, 2131, 1980.

    Article  Google Scholar 

  105. Zalesak, S. T., S. L. Ossakow, and P. K. Chaturvedi, Nonlinear equatorial spread F: The effect of neutral winds and background Pedersen conductivity, J. Geophys. Res., 87, 151, 1982.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. C. Fritts.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fritts, D.C., Abdu, M.A., Batista, B.R. et al. The spread F Experiment (SpreadFEx): Program overview and first results. Earth Planet Sp 61, 411–430 (2009). https://doi.org/10.1186/BF03353158

Download citation

Key words

  • Equatorial spread F
  • plasma instabilities
  • plasma bubbles
  • plasma bubble seeding
  • thermospheric gravity waves