Skip to main content

Volume 61 Supplement 4

Special Issue: Coupling Processes in the Equatorial Atmosphere (CPEA)

The spread F Experiment (SpreadFEx): Program overview and first results

Abstract

We performed an extensive experimental campaign (the spread F Experiment, or SpreadFEx) from September to November 2005 to attempt to define the role of neutral atmosphere dynamics, specifically wave motions propagating upward from the lower atmosphere, in seeding equatorial spread F and plasma bubbles extending to higher altitudes. Campaign measurements focused on the Brazilian sector and included ground-based optical, radar, digisonde, and GPS measurements at a number of fixed and temporary sites. Related data on convection and plasma bubble structures were also collected by GOES 12 and the GUVI instrument aboard the TIMED satellite. Initial results of our analyses of SpreadFEx and related data indicate 1) extensive gravity wave (GW) activity apparently linked to deep convection predominantly to the west of our measurement sites, 2) the presence of small-scale GWactivity confined to lower altitudes, 3) larger-scaleGWactivity apparently penetrating to much higher altitudes suggested by electron density and TEC fluctuations in the E and F regions, 4) substantial GW amplitudes implied by digisonde electron densities, and 5) apparent direct links of these perturbations in the lower F region to spread F and plasma bubbles extending to much higher altitudes. Related efforts with correlative data are defining 6) the occurrence and locations of deep convection, 7) the spatial and temporal evolutions of plasma bubbles, the 8) 2D (height-resolved) structures of plasma bubbles, and 9) the expected propagation of GWs and tides from the lower atmosphere into the thermosphere and ionosphere.

References

  • Abdu, M. A., Outstanding problems in the equatrial ionosphere-thermosphere system relevant to spread F, J. Atmos. Sol.-Terr. Phys., 63, 869, 2001.

    Article  Google Scholar 

  • Abdu, M. A., I. S. Batista, and J. H. A. Sobral, A new aspect of magnetic control of equatorial spread F, J. Geophys. Res., 97, 14,897, 1992.

    Article  Google Scholar 

  • Abdu, M. A., I. S. Batista, H. Takahashi, J. MacDougall, J. H. Sobral, A. F. Medeiros, and N. B. Trivedi, Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector, J. Geophys. Res., 108(A12), 1449, doi:10.1029/2002JA009721, 2003.

    Article  Google Scholar 

  • Abdu, M. A., E. A. Kherani, I. S. Batista, E. R. de Paula, and D. C. Fritts, An evaluation of the ESF/bubble irregularity growth conditions under gravity wave influences based on observational data from the SpreadFEx campaign, Ann. Geophys., SpreadFEx special issue, 2008 (submitted).

    Google Scholar 

  • Aggson, T. L., N. C. Maynard, W. B. Hanson, and L. Saba Jack, Electric field observations of equatorial bubbles, J. Geophys. Res., 97, 2997, 1992.

    Article  Google Scholar 

  • Anderson, D. N., A. D. Richmond, B. B. Balsley, R. G. Roble, M. A. Biondi, and D. P. Sipler, In situ generation of gravity waves as a possible seeding mechanism for equatorial spread-F, Geophys. Res. Lett., 9, 789–792, 1982.

    Article  Google Scholar 

  • Basu, B., On the linear theory of equatorial plasma instability: comparison of different descriptions, J. Geophys. Res., 107(A8), doi:10.1029/2001JA000317, 2002.

  • Batista, I. S. and M. A. Abdu, Ionospheric variability at Brazilian low and equatorial latitudes: comparison between observations and IRI model, Adv. Space Res., 34, 1894–1900, 2004.

    Article  Google Scholar 

  • Batista, P. P., B. R. Clemesha, A. S. Tokumoto, and L. M. Lima, Structure of the mean winds and tides in the meteor region over Cachoeira Paulista, Brazil (22.7°S,45°W) and its comparison with models, J. At-mos. Sol.-Terr. Phys., 66(6–9), 623–636, 2004.

    Article  Google Scholar 

  • Batista, I. S., M. A. Abdu, A. J. Carrasco, B. W. Reinisch, E. R. de Paula, and N. J. Schuch, Equatorial spread F and sporadic E-layer connections during the Brazilian Conjugate Point Equatorial Experiment—COPEX, J. Atmos. Sol.-Terr. Phys., 2008 (in press).

    Google Scholar 

  • Buriti, R. A., W. K. Hocking, P. P. Batista, A. F. Medeiros, and B. R. Clemesha, Observations of equatorial mesospheric winds over Cariri (7.4 S) by a meteor radar and comparison with existing models, Ann. Geophys., 2007 (submitted).

    Google Scholar 

  • Calais, E. and J. B. Minster, GPS, earthquakes, the ionosphere, and the Space Shuttle, Phys. Earth Planet. Inter., 105(3–4), 167–181, 1998.

    Article  Google Scholar 

  • Calais, E., J. S. Haase, and J. B. Minster, Detection of ionospheric perturbations using a dense GPS array in Southern California, Geophys. Res. Lett., 30(12), 2003.

  • de Paula, E. R. and D. L. Hysell, The São Luis 30 MHz coherent scatter ionospheric radar: system description and initial results, Radio Sci., 39, RS1014, doi:10.1029/2003RS002914, 2004.

    Article  Google Scholar 

  • Dewan, E. M. and R. H. Picard, Mesospheric bores, J. Geophys. Res., 103(D6), 6295–6306, 1998.

    Article  Google Scholar 

  • Dewan, E. M. and R. H. Picard, On the origin of mesospheric bores, J. Geophys. Res., 106(D3), 2921–2928, 10.1029/2000JD900697, 2001.

    Article  Google Scholar 

  • Djuth, F. T., M. P. Sulzer, J. H. Elder, and V. B. Wickwar, High-resolution studies of atmosphere-ionosphere coupling at Arecibo Observatory, Puerto Rico, Radio Sci., 32, 2321–2344, 1997.

    Article  Google Scholar 

  • Djuth, F. T., M. P. Sulzer, S. A. Gonzales, J. D. Mathews, J. H. Elder, and R. L. Walterscheid, A continuum of gravity waves in the Arecibo thermosphere?, Geophys. Res. Lett., 31, doi:10.1029/2003GL019376, 2004.

  • Fechine, J., A. F. Medeiros, R. A. Buriti, H. Takahashi, and D. Gobbi, Mesospheric bore events in the equatorial middle atmosphere, J. Atmos. Sol-Terr. Phys., 67, 1774–1778, 2005.

    Article  Google Scholar 

  • Fechine, J., C. M. Wrasse, H. Takahashi, A. F. Medeiros, P. P. Batista, B. R. Clemesha, L. M. Lima, D. Fritts, M. J. Taylor, P. D. Paulet, M. G. Mlynczak, and J. M. Russell, Mesospheric bore event during SpreadsFEx campaign, Ann. Geophys., SpreadFEx special issue, 2008 (submitted).

    Google Scholar 

  • Fejer, B. G., Natural ionospheric plasma waves, in Modern Ionospheric Science, edited by H. Kohl, R. Rüster, and K. Schlegel, pp. 217–273, Max-Planck Institut für Aeronomie, Lindau, Germany, 1996.

    Google Scholar 

  • Fejer, B. G., L. Scherliess, and E. R. de Paula, Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F, J. Geophys. Res., 104, 19,859, 1999.

    Article  Google Scholar 

  • Fritts, D. C. and L. Yuan, An analysis of gravity wave ducting in the atmosphere: Eckart’s resonances in thermal and Doppler ducts, J. Geophys. Res., 94(D15), 18,455–18,466, 1989.

    Article  Google Scholar 

  • Fritts, D. C. and M. J. Alexander, Gravity dynamics and effects in the middle atmosphere, Rev. Geophys., 41, doi:10.1029/2001RG000106, 2003.

  • Fritts, D. C. and S. A. Vadas, Gravity wave penetration into the thermosphere: Sensitivity to solar cycle variations and mean winds, Ann. Geo-phys., 2008 (in press).

    Google Scholar 

  • Fritts, D. C. et al., Overview and summary of the spread F Experiment (SpreadFEx), Ann. Geophys., SpreadFEx special issue, 2008a (in press).

    Google Scholar 

  • Fritts, D. C. et al., Gravity wave and tidal influences on equatorial spread F based on observations during the spread F Experiment (SpreadFEx), Ann. Geophys., SpreadFEx special issue, 2008b (submitted).

    Google Scholar 

  • Haerendel, G., J. V. Eccles, and S. Cakir, Theory of modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow, J. Geophys. Res., 97, 1209–1223, 1992.

    Article  Google Scholar 

  • Heelis, R. A., P. C. Kendall, R. J. Moffett, D. W. Windel, and H. Rishbeth, Electrical coupling of the E and F regions and its effect on F-region drifts and winds, J. Planet. Space Sci., 22, 743, 1974.

    Article  Google Scholar 

  • Hocke, K. and K. Schlegel, A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982–1995, Ann. Geophys., 14, 917–940, 1996.

    Google Scholar 

  • Hofmann-Wellenhof, B., Global Positioning System: theory and practice, 355 pp., Springer-Verlag, New York, 1994.

    Book  Google Scholar 

  • Huang, C. S. and M. C. Kelley, Nonlinear evolution of equatorial spread-F. 1. On the role of plasma instabilities and spatial resonance associated with gravity wave seeding, J. Geophys. Res., 101, 283, 1996a.

    Article  Google Scholar 

  • Huang, C. S. and M. C. Kelley, Nonlinear evolution of equatorial spread-F. 2. Gravity wave seeding of Rayleigh-Taylor instability, J. Geophys. Res., 101, 293, 1996b.

    Article  Google Scholar 

  • Huang, C. S. and M. C. Kelley, Nonlinear evolution of equatorial spread-F. 4. Gravity waves, velocity shear, and day-to-day variability, J. Geophys. Res., 101, 24,523, 1996c.

    Google Scholar 

  • Huang, C. S., M. C. Kelley, and D. L. Hysell, Nonlinear Rayleigh-Taylor instabilities, atmospheric gravity waves, and equatorial spread-F, J. Geophys. Res., 98, 15,631, 1993.

    Article  Google Scholar 

  • Huang, C. S., J. C. Foster, L. P. Goncharenko, G. D. Reeves, J. L. Chau, K. Yumoto, and K. Kitamura, Variations of low-latitude geomagnetic fiels and Dst index caused by magnetospheric substorms, J. Geophys. Res., 109, A05219, doi:10.1029/2003JA010334, 2004.

    Google Scholar 

  • Hysell, D. L., Radar imaging of equatorial F region irregularities with maximum entropy interferometry, Radio Sci., 31(6), 1567–1578, 1996.

    Article  Google Scholar 

  • Hysell, D. L. and J. D. Burcham, Long term studies of equatorial spread F using the JULIA radar at Jicamarca, J. Atmos. Sol.-Terr. Phys., 64, 1531–1543, 2002.

    Article  Google Scholar 

  • Hysell, D. L. and E. Kudeki, Collisional shear instability in the equatorial F region ionosphere, J. Geophys. Res., 109, A11301, doi:10. 1029/2004JA010636, 2004.

    Article  Google Scholar 

  • Hysell, D. L., M. C. Kelley, W. E. Swartz, and R. F. Woodman, Seeding and layering of equatorial spread-F, J. Geophys. Res., 95, 17,253, 1990.

    Article  Google Scholar 

  • Hysell, D. L., J. Chun, and J. L. Chau, Bottom-type scattering layers and equatorial spread F. Ann. Geophys., 22, 4061, 2004.

    Article  Google Scholar 

  • Hysell, D. L., M. F. Larsen, C. M. Swenson, A. Barjatya, T. F. Wheeler, M. F. Sarango, R. F. Woodman, and Chau, Onset conditions for equatorial spread Fdetermined during EQUIS II, Geophys. Res. Lett., 32, L24104, doi:10.1029/2005GL024743, 2005.

    Article  Google Scholar 

  • Kamalabadi, F. et al., Electron densities in the lower thermosphere from GUVI 1356 tomographic inversions in support of SpreadFEx, Ann. Geophys., SpreadFEx special issue, 2008 (submitted).

    Google Scholar 

  • Kelley, M. C., The Earth’s Ionosphere, 487 pp., Academic Press, San Diego, 1989.

    Google Scholar 

  • Kelley, M. C. and D. L. Hysell, Equatorial spread F and neutral atmospheric turbulence: a review and a comparative anatomy, J. Atmos. Terres. Phys., 53, 695–708, 1991.

    Article  Google Scholar 

  • Kelley, M. C., M. F. Larsen, C. LaHoz, and J. P. McClure, Gravity wave initiation of equatorial spread F: A case study, J. Geophys. Res., 86, 9087–9100, 1981.

    Article  Google Scholar 

  • Keskinen, M. J., S. L. Ossakow, and P. K. Chaturvedi, Preliminary report of numerical simulations of intermediate wavelength collisional Rayleigh-Taylor instability in equatorial spread-F, J. Geophys. Res., 85, 1775, 1980.

    Article  Google Scholar 

  • Keskinen, M. J., S. L. Ossakow, S. Basu, and P. Sultan, Magnetic flux tube integrated evolution of equatorial ionospheric plasma bubbles, J. Geophys. Res., 103, 3957, 1998.

    Article  Google Scholar 

  • Keskinen, M. J., S. L. Ossakow, and B. G. Fejer, Three-dimensional nonlinear evolution of equatorial ionospheric spread-F bubbles, Geophys. Res. Lett., 30, 1855, doi:10.1029/2003GL017418, 2003.

    Article  Google Scholar 

  • Kherani, E. A., M. A. Abdu, E. R. de Paula, D. C. Fritts, J. H. A. Sobral, and F. C. de Meneses Jr., The impact of gravity waves rising from convection in the lower atmosphere on the generation and nonlinear evolution of equatorial plasma bubbles, Ann. Geophys., SpreadFEx special issue, 2008 (submitted).

    Google Scholar 

  • Klostermeyer, J., Nonlinear investigation of the spatial resonance effect in the nighttime equatorial F region, J. Geophys. Res., 83, 3753, 1978.

    Article  Google Scholar 

  • Kudeki, E., A. Akgiray, M. Milla, J. L. Chau, and D. L. Hysell, Equatorial spread-F initiation: post-sunset vortex, thermospheric winds, gravity waves, J. Atmos. Sol.-Terr. Phys., 69, 2416–2427, 2007.

    Article  Google Scholar 

  • Kudeki, E. and S. Bhattacharyya, Postsunset vortex in equatorial F-region plasma drifts and implications for bottomside spread F, J. Geophys. Res., 104, 28,163, 1999.

    Article  Google Scholar 

  • Lane, T. P. and R. D. Sharman, Gravity wave breaking, secondary wave generation, and mixing above deep convection in a three-dimensional cloud model, Geophys. Res. Lett., 33, L23813, doi:10. 1029/2006GL027988, 2006.

    Article  Google Scholar 

  • Lane, T. P., M. J. Reeder, and T. L. Clark, Numerical modeling of gravity waves generated by deep tropical convection, J. Atmos. Sci., 58, 1249–1274, 2001.

    Article  Google Scholar 

  • Lane, T. P., R. D. Sharman, T. L. Clark, and H.-M. Hsu, An investigation of turbulence generation mechanisms above deep convection, J. Atmos. Sci., 60, 1297–1321, 2003.

    Article  Google Scholar 

  • Lanyi, G. E. and T. Roth, A comparison of mapped and measured total ionospheric electron-content using global positioning system and beacon satellite-observations, Radio Sci., 23(4), 483–492, 1988.

    Article  Google Scholar 

  • Laughman, B., D. C. Fritts, and J. Werne, Numerical simulation of bore generation and morphology in thermal and Doppler ducts, Ann. Geophys., SpreadFEx special issue, 2008 (submitted).

    Google Scholar 

  • McClure, J. P., W. B. Hanson, and J. F. Hoffman, Plasma bubble and irregularities in the equatorial ionosphere, J. Geophys. Res., 82, 2650, 1977.

    Article  Google Scholar 

  • McClure, J. P., S. Singh, D. K. Bamgboye, F. S. Johnson, and H. Kil, Occurrence of equatorial F region irregularities: Evidence for tropospheric seeding, J. Geophys. Res., 103, 29,119–29,135, 1998.

    Article  Google Scholar 

  • Medeiros, A. F, R. A. Buriti, E. A. Machado, H. Takahashi, P. P. Batista, D. Gobbi, and M. J. Taylor, Comparison of gravity wave activity observed by airglow imaging at two different latitudes in Brazil, J. Atmos. Sol.-Terr. Phys., 60, 647–654, 2004.

    Article  Google Scholar 

  • Medeiros, A. F, J. Fechine, R. A. Buriti, H. Takahashi, C. M. Wrasse, and D. Gobbi, Response of OH, O2, and OI5577 airglow emissions to the mesospheric bore in the equatorial region of Brazil, Adv. Space Res., 35, 1971–1975, 2005.

    Article  Google Scholar 

  • Mendillo, M. and A. Tyler, The geometry of depleted plasma regions in the equatorial ionosphere, J. Geophys. Res., 88, 5778, 1983.

    Article  Google Scholar 

  • Meriwether, J., M. Faivre, C. Fesen, P. Sherwood, and O. Veliz, New results on equatirla thermospheric winds and the midnight temperature maximum, Ann. Geophys., 2008 (in press).

    Google Scholar 

  • Oliver, W. L., Y. Otsuka, M. Sato, T. Takami, and S. Fukao, A climatology of F region gravity wave propagation over the middle and upper atmosphere radar, J. Geophys. Res., 102, 14,499–14,512, 1997.

    Article  Google Scholar 

  • Ossakow, S. L., Spread-F theories—A review, J. Atmos. Terres. Phys., 43, 437, 1981.

    Article  Google Scholar 

  • Piani, C., D. Durran, M. J. Alexander, and J. R. Holton, A numerical study of three-dimensional gravity waves triggered by deep tropical convection, J. Atmos. Sci., 57, 3689–3702, 2000.

    Article  Google Scholar 

  • Prakash, S., Production of electric field perturbations by gravity wave winds in the E region suitable for initiating equatorial spread F, J. Geophys. Res., 104, 10,051–10,069, 1999.

    Article  Google Scholar 

  • Rodrigues, F. S., E. R. de Paula, M. A. Abdu, A. C. Jardim, K. N. Iyer, P. M. Kintner, and D. L. Hysell, Equatorial spread F irregularity characteristics over São Luis, Brazil, Radio Sci., 39, doi:10.1029/2002RS002826, 2004.

  • Scannapieco, A. J. and S. L. Ossakow, Nonlinear spread-F, Geophys. Res. Lett., 3, 451, 1976.

    Article  Google Scholar 

  • Sekar, R. and M. C. Kelley, On the combined effects of vertical shear and zonal electric field patterns on nonlinear equatorial spread F evolution, J. Geophys. Res., 103, 20,735–20,747, 1998.

    Article  Google Scholar 

  • Sekar, R., R. Suhasini, and R. Raghavarao, Evolution of plasma bubbles in the equatorial F region with different seeding conditions, Geophys. Res. Lett., 22, 885, 1995.

    Article  Google Scholar 

  • Sentman, D. D., E. M. Wescott, R. H. Picard, J. R. Winick, H. C. Stenbaek-Nielson, E. M. Dewan, D. R. Moudry, F. T. São Sabbas, and M. J. Heavner, Simultaneous observation of mesospheric gravity waves and sprites generated by a Midwestern thunderstorm, J. Atmos. Sol.-Terr. Phys., 65, 537–550, 2003.

    Article  Google Scholar 

  • Seyler, C. E., Internal waves and undular bores in mesospheric inversion layers, J. Geophys. Res., 110, D09S05, doi:10.1029/2004JD004685, 2005.

    Google Scholar 

  • Sobral, J. H. A., M. A. Abdu, and I. S. Batista, Airglow studies on the ionosphere dynamics over low latitude in Brazil, Ann. Geophys., 36(2), 199–204, 1980a.

    Google Scholar 

  • Sobral, J. H. A., M. A. Abdu, I. S. Batista, and C. J. Zamlutti, Association between plasma bubble and airglow disturbances over Brazilian low latitudes, Geophys. Res. Lett., 11(7), 980–982, 1980b.

    Article  Google Scholar 

  • Sobral, J. A. H., H. Takahashi, M. A. Abdu, M. J. Taylor, H. Sawant, D. C. Santana, D. Gobbi, A. F. de Medeiros, C. J. Zamlutti, N. J. Schuch, and G. L. Borba, Thermospheric F-region travelling disturbances detected at low latitude by an OI (630 nm) imager system, Adv. Space Sci., 27, 1201–1206, 2001.

    Article  Google Scholar 

  • Sobral, J. H. A, M. A. Abdu, H. Takahashi, M. J. Taylor, E. R. de Paula, C. J. Zamlutti, and G. L. Borba, A study of the ionospheric plasma bubbles climatology over Brazil, based on 22 years (1977–1998) of OI 630 nm airglow observation, J. Atmos. Terr. Phys., 64(12–14), 1517–1524, 2002.

    Article  Google Scholar 

  • Stolle, C., H. Luhr, M. Rother, and G. Balasis, Magnetic signatures of equatorial spread F as observed by the CHAMP satellite, J. Geophys. Res., 111, A02304, doi:10.1029/2005JA011184, 2006.

    Google Scholar 

  • Su, S.-Y., C. K. Chao, and C. H. Liu, On monthly/seasonal/longitudinal variations of equatorial irregularity occurrencesand their relationship with the postsunset vertical drift velocities, J. Geophys. Res., 113, A05307, doi:10.1029/2007JA012809, 2008.

    Google Scholar 

  • Sultan, P. J., Linear theory and modeling of the Rayleigh Taylor instability leading to the occurrence of equatorial spread F, J. Geophys. Res., 101, 26875–26891, 1996.

    Article  Google Scholar 

  • Swartz, W. E. and R. F. Woodman, Same night observations of spread-F by the Jicamarca Radio Observatory in Peru and CUPRI in Alcantara, Brazil, Geophys. Res. Lett., 25, 17–20, 1998.

    Article  Google Scholar 

  • Takahashi, H., M. J. Taylor, P.-D. Pautet, A. F. Medeiros, D. Gobbi, C. M. Wrasse, J. Fechine, M. A. Abdu, I. S. Batista, E. Paula, J. H. A. Sobral, D. Arruda, S. Vadas, F. S. Sabbas, and D. Fritts, Simultaneous observation of ionospheric plasma bubbles and mesospheric gravity waves during the SpreadFEx Campaign, Ann. Geophys., SpreadFEx special issue, 2008 (in review).

    Google Scholar 

  • Taylor, M. J. and M. A. Hapgood, Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emissions, Planet. Space Sci., 36, 975, 1988.

    Article  Google Scholar 

  • Taylor, M. J., J.-M. Jahn, S. Fukao, and A. Saito, Possible evidence of gravity wave coupling into the mid-latitude F region ionosphere during the SEEK campaign, Geophys. Res. Lett., 25, 1801–1804, 1998.

    Article  Google Scholar 

  • Taylor, M. J. et al., Gravity waves in the OH airglow layer observed during the SpreadFEx campaign in Brazil, SpreadFEx special issue, Ann. Geophys., 2008 (submitted).

    Google Scholar 

  • Taylor, M. J., P. D. Pautet, A. F. Medeiros, R. Buriti, J. Fechine, D. C. Fritts, S. Vadas, H. Takahashi, and F. São Sabbas, Characterizing mesospheric gravity waves near the magnetic equator, Brazil during the SpreadFEx campaign, Ann. Geophys., SpreadFEx special issue, 2008 (submitted).

    Google Scholar 

  • Tsuda, T., M. Nishida, and C. Rocken, A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET), J. Geophys. Res., 105, 7257–7274, 2000.

    Article  Google Scholar 

  • Tsunoda, R. T., Time evolution and dynamics of equatorial backscatter plumes: 1. Growth phase, J. Geophys. Res., 86, 139–149, 1981.

    Article  Google Scholar 

  • Tsunoda, R. T., On the enigma of day-to-day variability in equatorial spread F, Geophys. Res. Lett., 32, L08103, doi:10. 1029/2005GL022512, 2005.

    Article  Google Scholar 

  • Tsunoda, R. T., Day-to-day variability in equatorial spread F: Is there some physics missing?, Geophys. Res. Lett., 33, L16106, doi:10.1029/ 2006GL025956, 2006.

    Article  Google Scholar 

  • Tsunoda, R. T., Seeding of equatorial plasma bubbles with electric fields from an Es-layer instability, J. Geophys. Res., 112, A06304, doi:10.1029/2006JA012103, 2007.

    Google Scholar 

  • Vadas, S. L., Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources, J. Geophys. Res., 112, A06305, doi:10.1029/2006JA011845, 2007.

    Google Scholar 

  • Vadas, S. L. and D. C. Fritts, Gravity wave radiation and mean responses to local body forces in the atmosphere, J. Atmos. Sci., 58, 2249–2279, 2001.

    Article  Google Scholar 

  • Vadas, S. L. and D. C. Fritts, The importance of spatial variability in the generation of secondary gravity waves from local body forces, Geophys. Res. Lett., 29(20), 10.1029/2002GL015574, 2002.

  • Vadas, S. L. and D. C. Fritts, Thermospheric responses to gravity waves arising from mesoscale convective complexes, J. Atmos. Sol.-Terr. Phys., 66, 781–804, 2004.

    Article  Google Scholar 

  • Vadas, S. L. and D. C. Fritts, Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity, J. Geophys. Res., 110, D15103, doi:10.1029/2004JD005574, 2005.

    Article  Google Scholar 

  • Vadas, S. L. and D. C. Fritts, The influence of increasing temperature and solar variability on gravity wave structure and dissipation in the thermosphere, J. Geophys. Res., TIMED special issue, 111, A10812, doi:10.1029/2005JA011510, 2006.

    Google Scholar 

  • Vadas, S. L. and D. C. Fritts, Reconstruction of the gravity wave field from convective plumes via ray tracing, Ann. Geophys., SpreadFEx special issue, 2008 (submitted).

    Google Scholar 

  • Vadas, S. L., D. C. Fritts, and M. J. Alexander, Mechanism for the generation of secondary waves in wave breaking regions, J. Atmos. Sci., 60, 194–214, 2003.

    Article  Google Scholar 

  • Vadas, S. L., M. J. Taylor, P.-D. Pautet, P. Stamus, D. C. Fritts, F. São Sabbas, and V. Thiago, Convection: The likely source of the medium-scale gravity waves observed in the OH airglow layer near Brasilia, Brazil, during the SpreadFEx campaign, Ann. Geophys., SpreadFEx special issue, 2008 (submitted).

    Google Scholar 

  • Valladares, C. E., W. B. Hanson, J. P. McClure, and B. L. Cragin, Bottomside sinusoidal irregularities in the equatorial F region, J. Geophys. Res., 88, 8025, 1983.

    Article  Google Scholar 

  • Woodman, R. F. and C. LaHoz, Radio observations of F-region equatorial irregularities, J. Geophys. Res., 85, 5447, 1976.

    Article  Google Scholar 

  • Zalesak, S. T. and S. L. Ossakow, Nonlinear equatorial spread F: Spatially large bubbles resulting from large horizontal scale initial perturbations, J. Geophys. Res., 85, 2131, 1980.

    Article  Google Scholar 

  • Zalesak, S. T., S. L. Ossakow, and P. K. Chaturvedi, Nonlinear equatorial spread F: The effect of neutral winds and background Pedersen conductivity, J. Geophys. Res., 87, 151, 1982.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Fritts.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Fritts, D.C., Abdu, M.A., Batista, B.R. et al. The spread F Experiment (SpreadFEx): Program overview and first results. Earth Planet Sp 61, 411–430 (2009). https://doi.org/10.1186/BF03353158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353158

Key words