Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

The origins of electrical resistivity in magnetic reconnection: Studies by 2D and 3D macro particle simulations

Abstract

This article argues the roles of electrical resistivity in magnetic reconnection, and also presents recent 3D particle simulations of coalescing magnetized flux bundles. Anomalous resistivity of the lower-hybrid-drift (LHD) instability, and collisionless effects of electron inertia and/or off-diagonal terms of electron pressure tensor are thought to break the frozen-in state that prohibits magnetic reconnection. Studies show that, while well-known stabilization of the LHD instability in high-beta plasma condition makes anomalous resistivity less likely, the electron inertia and/or the off-diagonal electron pressure tensor terms make adequate contributions to break the frozen-in state, depending on strength of the toroidal magnetic field. Large time and space scale particle simulations show that reconnection in magnetized plasmas proceeds by means of electron inertia effect, and that electron acceleration results instead of Joule heating of the MHD picture. Ion inertia contributes positively to reconnection, but ion finite Larmor radius effect does negatively because of charge separation of ions and magnetized electrons. The collisionless processes of the 2D and 3D simulations are similar in essence, and support the mediative role of electron inertia in magnetic reconnection of magnetized plasmas.

References

  1. Biskamp, D., E. Schwartz, and J. F. Drake, Ion-controlled collisionless magnetic reconnection, Phys. Rev. Lett., 75, 3850, 1995.

    Article  Google Scholar 

  2. Cai, H. J., D. Q. Ding, and L. C. Lee, The generalized Ohm’s law in collisionless reconnection, Phys. Plasmas, 4, 509, 1997.

    Article  Google Scholar 

  3. Davidson, R. C. and N. T. Gladd, Anomalous transport properties associated with the lower-hybrid-drift instability, Phys. Fluids, 18, 1327, 1975.

    Article  Google Scholar 

  4. Dreher, J., U. Arendt, and K. Schindler, Particle simulation of collisionless reconnection in magnetotail configuration including electron dynamics, J. Geophys. Res., 101, 27375, 1996.

    Article  Google Scholar 

  5. Dungey, J. W., Conditions for the occurrence of electrical discharges in astrophysical systems, Phil. Mag., 44, 725, 1953.

    Article  Google Scholar 

  6. Hesse, M. and D. Winske, Electron dissipation in collisionless magnetic reconnection, J. Geophys. Res., 103, 26, 1998.

    Google Scholar 

  7. Hesse, M., K. Schindler, J. Birn, and M. Kuznetsova, The diffusion region in collisionless magnetic reconnection, Phys. Plasmas, 6, 1781, 1999.

    Article  Google Scholar 

  8. Hoshino, M., The electrostatic effect for the collisionless tearing mode, J. Geophys. Res., 92, 7368, 1987.

    Article  Google Scholar 

  9. Krall, N. A. and P. C. Liewer, Low frequency instabilities in magnetic pulses, Phys. Rev. A, 4, 2094, 1971.

    Article  Google Scholar 

  10. Kuznetsova, M., M. Hesse, and D. Winske, Toward a transport model of collisionless magnetic reconnection, J. Geophys. Res., 105, 7601, 2000.

    Article  Google Scholar 

  11. Parker, E. N., The solar flare phenomenon and the theory of reconnection and annihilation of magnetic fields, Astrophys. J. Suppl., 77, 177, 1963. Shinohara, I., PhD Dissertation, University of Tokyo, 1996.

    Article  Google Scholar 

  12. Speiser, T. W., Conductivity without collisions or noise, Planet. Space Sci., 18, 613, 1970.

    Article  Google Scholar 

  13. Sweet, A., The production of high energy particles in solar flares, Nuovo Cimento, 8, 188, 1958.

    Article  Google Scholar 

  14. Tajima, T., F. Brunel, and J. Sakai, Loop coalescence in flares and coronal x-ray brightening, Astrophys. J., 258, L45, 1982.

    Article  Google Scholar 

  15. Tanaka, M., Roles of plasma microinstabilities in the magnetic reconnection process, PhD Dissertation, University of Tokyo, 1981.

    Google Scholar 

  16. Tanaka, M., Macroscale implicit electromagnetic particle simulation of magnetized plasmas, J. Comput. Phys., 79, 209, 1988

    Article  Google Scholar 

  17. Tanaka, M., A simulation of low-frequency electromagnetic phenomena in kinetic plasmas of three dimensions, J. Comput. Phys., 107, 124, 1993.

    Article  Google Scholar 

  18. Tanaka, M., The macro-EM particle simulation method and a study of collisionless magnetic reconnection, Comput. Phys. Commun., 87, 117, 1995a.

    Article  Google Scholar 

  19. Tanaka, M., Macro-particle simulations of collisionless magnetic reconnection, Phys. Plasmas, 2, 2920, 1995b.

    Article  Google Scholar 

  20. Tanaka, M., Asymmetry and thermal effects due to parallel motion of electrons in collisionless magnetic reconnection, Phys. Plasmas, 3, 4010, 1996.

    Article  Google Scholar 

  21. Tanaka, M., Magnetic Reconnection in Space and Laboratory Plasmas, Focused Talk, The University of Tokyo Symposium, February 28–March 4, 2000.

  22. Tanaka, M. and T. Sato, Simulations of lower hybrid drift instability and anomalous resistivity in the magnetic neutral sheet, J. Geophys. Res., 86, 5552, 1981.

    Google Scholar 

  23. Vu, H. X. and J. U. Brackbill, CELEST1D: an implicit, fully kinetic model for low-frequency electromagnetic plasma simulation, Comput. Phys. Commun., 69, 253, 1992.

    Article  Google Scholar 

  24. Wesson, J. A., Sawtooth reconnection, Nucl. Fusion, 30, 2545, 1990.

    Article  Google Scholar 

  25. Winske, D., Current-driven microinstabilities in a neutral sheet, Phys. Fluids, 24, 1069, 1981.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Motohiko Tanaka.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanaka, M. The origins of electrical resistivity in magnetic reconnection: Studies by 2D and 3D macro particle simulations. Earth Planet Sp 53, 463–472 (2001). https://doi.org/10.1186/BF03353257

Download citation

Keywords

  • Magnetic Reconnection
  • Current Layer
  • Particle Simulation
  • Reconnection Rate
  • Anomalous Resistivity