 FULL PAPER
 Open Access
Automated analysis of Kokee–Wettzell Intensive VLBI sessions—algorithms, results, and recommendations
 Niko Kareinen^{1}Email author,
 Thomas Hobiger^{1} and
 Rüdiger Haas^{1}
 Received: 23 June 2015
 Accepted: 6 October 2015
 Published: 5 November 2015
Abstract
The timedependent variations in the rotation and orientation of the Earth are represented by a set of Earth Orientation Parameters (EOP). Currently, Very Long Baseline Interferometry (VLBI) is the only technique able to measure all EOP simultaneously and to provide direct observation of universal time, usually expressed as UT1UTC. To produce estimates for UT1UTC on a daily basis, 1h VLBI experiments involving two or three stations are organised by the International VLBI Service for Geodesy and Astrometry (IVS), the IVS Intensive (INT) series. There is an ongoing effort to minimise the turnaround time for the INT sessions in order to achieve near realtime and high quality UT1UTC estimates. As a step further towards true fully automated realtime analysis of UT1UTC, we carry out an extensive investigation with INT sessions on the Kokee–Wettzell baseline. Our analysis starts with the first versions of the observational files in S and Xband and includes an automatic group delay ambiguity resolution and ionospheric calibration. Several different analysis strategies are investigated. In particular, we focus on the impact of external information, such as meteorological and cable delay data provided in the station logfiles, and a priori EOP information. The latter is studied by extensive Monte Carlo simulations.
Our main findings are that it is easily possible to analyse the INT sessions in a fully automated mode to provide UT1UTC with very low latency. The information found in the station logfiles is important for the accuracy of the UT1UTC results, provided that the data in the station logfiles are reliable. Furthermore, to guarantee UT1UTC with an accuracy of less than 20 μs, it is necessary to use predicted a priori polar motion data in the analysis that are not older than 12 h.
Keywords
 VLBI
 Earth rotation
 UT1UTC
 Intensives
 Automated analysis
Background
The changes in the components of the rotation vector of the Earth are represented by a set of parameters called the Earth Orientation Parameters (EOP). These parameters consist of the Universal Time, polar motion, and coordinates of the celestial pole. The EOP are continually monitored and provided as time series using a combination of space geodetic techniques, of which Very Long Baseline Interferometry (VLBI) (Sovers et al. 1998) is the only one capable of measuring all the EOP directly and simultaneously. The most rapidly varying and most difficult to predict EOP is the daily rotation of the Earth, UT1, which is usually reported as difference between UT1 and UTC. In the following, we will thus refer to UT1UTC. To provide lowlatency estimates of UT1UTC, the International VLBI Service for Geodesy and Astrometry (IVS) (Schuh and Behrend 2012) organises daily 1h observation sessions on one extended East–West oriented baseline, the socalled IVS Intensive (INT) sessions. Currently, there are three different INT session types observed: INT1 on Monday to Friday on the baseline Kokee (Hawaii, USA)–Wettzell (Germany), INT2 on weekends using the baseline Tsukuba (Japan)–Wettzell, and INT3 on Monday mornings involving the stations at Tsukuba, Wettzell and NyÅlesund (Spitsbergen, Norway). When the recorded data are correlated and analysed, the resulting UT1UTC estimates are submitted to the International Earth Rotation and Reference Systems Service (IERS) to be incorporated in the computation of the rapid EOP products.
The aim of the INT sessions is to provide highly accurate UT1UTC products with minimal latency. To analyse the INT sessions in a regular and reliable fashion, it is necessary to avoid the need for manual interaction. Thus, an automated analysis approach is required. For the INT2 sessions, this was successfully demonstrated using the c5++ analysis software in Hobiger et al. (2010), and these sessions have been processed in automatic mode since then.
In this manuscript, we focus on the Kokee–Wettzell baseline, i.e. the INT1 sessions, and investigate the error budget of the UT1UTC estimate w.r.t. different analysis options and the accuracy of a priori data used. Because of the short observation duration of just 1 h and the fact that only one baseline is used in the INT1 and INT2 experiments, only a few parameters can be determined in the data analysis. Thus, in order to estimate UT1UTC, it is necessary to have access to accurate a priori EOP as well as station positions and velocities.
Since the aim is to analyse the sessions immediately after the correlator has produced the observational files, predicted a priori EOP information has to be used for the analysis. Station positions and their linear velocities are usually sufficiently accurate in order to keep stations coordinates fixed. However, for the INT2 sessions, this might lead to difficulties due to the 2011 earthquake off the Pacific coast of Tōhoku in Japan. The earthquake caused a coseismic displacement for the station Tsukuba, followed by an ongoing postseismic motion, which complicates the choice of good a priori coordinates for this station.
In the following, we do not only present an automated analysis procedure for the INT1 sessions to estimate UT1UTC with minimised latency, but we also assess different analysis configurations. We investigate the necessity of external information, i.e. weather and cable delay data extracted from the station logfiles, and their importance on producing highquality UT1UTC estimates. Moreover, the impact of accuracy of the predicted a priori EOP is studied using extensive Monte Carlo simulations. Finally, we assess whether it is possible to additionally estimate the position of one of the stations of an INT session.
Methods
General overview on geodetic VLBI data analysis for EOP determination
The main tasks in the process of producing observables from VLBI experiment include scheduling, the experiment (simultaneous observations), correlation, and postprocessing. The obtained observables are normally stored into databases, one for X and Sband each. Currently, to solve the group delay ambiguities and to perform the ionosphere calibration, the X and Sband databases have to be processed with CALC/SOLVE (Ma et al. 1990) or c5++ (Hobiger et al. 2010) in order to obtain an ambiguityfree and ionospherefree Xband databases. This database can then be further analysed in order to produce estimates for various geodetic parameters, either by one of the aforementioned software, or e.g. the Vienna VLBI Software (VieVS) (Boehm et al. 2012), OCCAM (Titov et al. 2004), and GEOSAT (Andersen 2000), which all need the ambiguityresolved and ionospherefree databases as input.
The observational duration of VLBI sessions differs based on their purpose, but typically geodetic VLBI sessions organised by the IVS consist of either 24h rapid turnaround (twice per week) for EOP determination or 1h INT sessions (8 times per week) for UT1UTC determination.
The 24h experiments usually consist of a core network of 8 or more globally distributed stations. In such a setup, the analysis starts with solving (and distributing) the ambiguities among the observation network and computing the ionosphere correction. If the experiment is carried out successfully, i.e. the correlator is able to detect fringes, and to provide the observables (delays, delay rates), the spatial distribution and number of participating stations enables the analyst to estimate a wide selection of geodetic parameters, including EOP, station positions, and atmospheric delays and gradients. Typically, the estimation is done via some form of leastsquares adjustment. The main operational purpose of the rapid turnaround experiments is to produce EOP results with a maximum latency of 15 days. On the contrary, the main purpose of the INT sessions is to produce daily estimates of UT1UTC with minimal latency.
Analysis of intensive VLBI sessions
The INT1 and INT2 sessions are usually conducted on one baseline each and include 1 h of observations. The baselines in both experiments are oriented in East–West to make them most sensitive to changes in UT1UTC. Hence, the analysis of the INT sessions differs from that of the 24h sessions due to their fundamental differences in the number of stations involved and the observation duration, and subsequently the number of observations. In the analysis of INT sessions, the IVS Analysis Centres normally fix the station positions to the VLBI contribution to the International Terrestrial Reference Frame (ITRF) (Altamimi et al. 2011), e.g. VTRF2008, VTRF2013, or to an analysis centre specific global solution (IERS Operational EOP Series technical descriptions 2015). These reference frames typically account only for station position and linear velocities. Nonlinear motion in the station positions is caused by phenomena such as unmodelled seasonal variation (Malkin 2013) and postseismic motion caused by earthquakes. The latter being the situation in Tsukuba, as mentioned earlier in the manuscript. Consequently, also the UT1UTC estimates from INT experiments are affected by the nonlinear motion. In Malkin (2013), it was shown that if these seasonal variations are ignored a systematic error exceeding 1 μs can propagate into UT1UTC estimates from INT1 sessions. The radio source positions are normally fixed to International Celestial Reference Frame (ICRF2) (Fey et al. 2015) or to an analysis centre specific global solution (IERS Operational EOP Series technical descriptions 2015).
Due to the limited availability of telescope time for daily monitoring efforts, the INT session duration is restricted to 1 h. Thus, as compared to the 24h sessions, there is a limited number of observations, causing that the possibility to estimate clock and atmospheric parameters is restricted. The advantage of a longer duration of 2 h has been investigated by analysing dedicated IVSR&D sessions (Artz et al. 2012), in which the approximately doubled number of observations decreased the standard deviations of UT1UTC by a factor of \(\sqrt {2}\).
A typical setup for the parameter estimation for an INT session
Parameter  Station #1  Station #2  

Station clock  Reference  Estimate three terms  
(quadratic, linear, offset)  
Station position  Fix to ITRF2008  Fix to ITRF2008  
Zenith Hydrostatic Delay  Fix  Fix  
Zenith Wet Delay  Estimate one offset  Estimate one offset  
Radio sources  Fix to ICRF2  
UT1UTC  Estimate one offset  
Polar motion  Fix to a priori  
Nutation/precession  Fix to a priori 
As shown in Table 1, the estimated parameters can be divided into stationdependent and sessiondependent parameters, shown in the upper and lower four lines, respectively. The choice of the reference station is to some degree arbitrary, but as a general rule the station should have a stable clock and no other known problems. The clock of the reference station is not estimated while the clock for the second station is estimated by a secondorder polynomial with a quadratic, a linear, and an offset term. The positions of both stations are fixed to their a priori values. The Zenith Hydrostatic Delays (ZHD) are fixed for both stations to constant values computed as function of the local surface pressure, station latitude, and orthometric height. The Zenith Wet Delays (ZWD) are estimated individually for both stations as one constant offset for the whole duration of the INT session. Radio source positions are kept fixed to ICRF2. Polar motion and nutation are fixed to their a priori values, and UT1UTC is estimated as one offset to the a priori values. Thus, in total the number of estimated parameters in INT sessions is six. Estimation of the tropospheric horizontal gradients is not introduced into the standard analysis procedure of INT experiments due to the small number of observations. However, it is possible to compute a priori values for the gradients with external data from, e.g., numerical weather models or by estimating the gradients using observations from colocated GNSS sites. The effect of this additional information to the UT1UTC estimation has been investigated in, e.g., Boehm et al. (2010) and Teke et al. (2015). Boehm et al. (2010) showed that the use of a priori values from direct raytracing or linear horizontal gradients on the Tsukuba–Wettzell baseline (INT2) did not significantly decrease the empirical standard deviations of UT1UTC, but lengthofday (LOD) comparisons show a possibility to improve the results with direct raytracing. In Teke et al. (2015), the use of GNSSderived gradients showed only small improvement in UT1UTC accuracy. Additionally, in Nilsson et al. (2011), daily 2h segments from the 15day CONT08 campaign in August 2008 were used to emulate singlebaseline experiments corresponding to INT1 and INT2 sessions. Even though the UT1UTC estimate improved when analysing these segments by estimating gradients, this was mostly seen on the Tsukuba–Wettzell baseline. This is due to more dynamical weather conditions at the Tsukuba station. In order to include gradients into the near realtime analysis of INT sessions, while keeping the number of estimated parameters low, timely external data from numerical weather models are needed.
The weather data, mainly the local pressure, which is required to compute and estimate the tropospheric parameters, are obtained from the station logfiles, if available, or from empirical/numerical weather models. The ambiguity resolution and the ionosphere correction need to be done in a similar manner as for the 24h network experiments. However, resolving the ambiguities is simpler, since there is only one baseline in the INT1 and INT2 experiments.
Towards automated realtime analysis of Intensive sessions

Is it necessary to use the local meteorological data from the station logfiles?

What is the impact of using GMF (GPT2) or VMF1 (Boehm et al. 2006) as the mapping function?

What is the effect of the cable delay data?

To what degree does the accuracy of the estimated UT1UTC depend on the a priori EOP?

Can we simultaneously estimate UT1UTC and one of the station positions?
In the analysis, we used a priori values for the EOP from the time series EOP (IERS) 08 C04 (Bizouard and Gambis 2011), that we will refer to as C04 in the following. This time series has however a latency of 30 days. For realtime automated analysis, the a priori values have to be obtained from a source with lower latency, such as the daily solution from the IERS Rapid Service/Prediction Centre by the United States Naval Observatory (USNO) or from the IERS Bulletin A (IERS Bulletin A 2015). The IERS rapid solution is released daily approximately at 17:05 UTC including 90 days of predictions. Bulletin A has a release frequency of 1 week and contains predicted values up to 365 days from the release epoch.
Although there were over 3000 INT1 sessions observed between January 2001 and January 2015, in total only 2071 Version 1 databases were available on the IVS data centres (IVS Data centers 2015). Our goal was to work with a homogeneous dataset, thus we selected only the INT1 sessions involving Kokee–Wettzell. This selection excluded INT1 sessions which, e.g., involved additionally Svetloe as a third station. There were also periods when Wettzell was undergoing maintenance work and was replaced by, e.g., NyÅlesund. The corresponding databases were not included in our analysis. Furthermore, we selected only sessions for which logfiles for both stations were available on the IVS archive. Finally, 1669 out of the 2071 sessions remained and were used in the analysis.
Results and discussion
Impact of logfiles and mapping functions
Overview on the four analysis strategies used
Analysis strategy  Mapping function  Pressure data  Cable delay data 

VMFSL  VMF1  Station logfiles  Station logfiles 
GMFSL  GMF(GPT2)  Station logfiles  Station logfiles 
VMFNL  VMF1  GPT2  Not used 
GMFNL  GMF(GPT2)  GPT2  Not used 
When station logfile information was used, both mapping functions (VMF1 and GMF) used the pressure provided in the station logfiles. In the cases where no station logfiles were used, both mapping functions took the pressure data from GPT2. The stationdependent coefficients for VMF1 were provided by the Vienna University of Technology (Vienna University of Technology. Archive of troposphere delay parameters 2015).
Wettzell was chosen as the reference station in the analysis, and no clock parameters were estimated for that station.
c5++ eliminates outlier delay values within a session according to a 3sigma criteria. Additionally, in order to eliminate crude outliers, we used for all analysis runs a rejection criteria of 1000 μs and 50 μs for the absolute values of UT1UTC residuals and corresponding formal errors, respectively, for each session. To ensure robustness, only sessions which appear in all configurations after the outlier elimination were included in the comparison of the results from different setups.
Statistical information related to the four analysis strategies. Number of rejected sessions out of the total of 1669, WRMS w.r.t. C04 and weighted bias w.r.t. C04 for each solution type individually and differences for the common sessions
Rejected sessions  WRMS  Weighted bias  σ _{UT1UTC}  σ _{UT1UTC}  

[ μs]  [ μs]  <10 μs  <20 μs  
VMFSL  311  17.63  2.65  44.92 %  88.43 % 
GMFSL  311  17.64  2.65  44.77 %  88.66 % 
VMFNL  263  18.03  2.65  44.87 %  89.90 % 
GMFNL  263  18.04  2.67  44.67 %  89.83 % 
Table 3 lists the statistical information for each individual solution type as well as the number of sessions that were rejected out of the 1669 sessions. In the analysis using GMF(GPT2), the difference in the number of rejected sessions when using or not using information from the station logfiles is due to the rejection criteria that the formal errors were exceeding 50 μs. This is the same for the analyses with VMF1, with the exception that in two cases both the adjustment and the formal error exceeded the exclusion limits when information from the station logfiles was used.
The results from these comparisons show that the WRMS w.r.t. C04 does not differ by more than 1 μs when using the two different mapping functions. Furthermore, the differences between WRMS of UT1UTC residuals with either mapping function and solutions with and without logfiles are within 0.01 μs.
To reduce the dependence on external data, we chose the GMFNL processing strategy for all further investigations. This choice also comes very close to the case of near realtime processing, as for this case VMF1 data are only available in their forecast version and an automated and reliable extraction of information from station logfiles is not available.
Impact of cable delay data
The scatter plot for Wettzell shows clearly that all of the jump points are correlated with high RMS values for the cable delay. The majority of the cable delay RMS values are below 5 ps, whereas the jump points have an RMS value centred between 15 and 20 ps. For Kokee, no similar dependence can be seen as all the corresponding points lie within the normal RMS of cable delay range for the station. Thus we can conclude that apparent problems with the cable delay readings in the Wettzell station logfiles are the cause for the jump in the difference of the UT1UTC residuals w.r.t. C04.
Because the aim of our work is to analyse INT sessions automatically and in near realtime, outliers in the station logfiles can cause various problems. The automation requirement makes it difficult to detect any suspicious readings in the station logfiles. Furthermore, due to software or hardware errors, station logfiles may contain lines of nonstandard output, which can cause further problems in the automated analysis. Thus, for the standard nonautomated IVS processing, the station logfiles are usually screened manually (Gipson 2015, personal communication) or processed with a semiautomatic program (Thorandt 2015, personal communication) so that suspicious or wrong cable calibration data do not propagate in the analysis.
Due to these possible complications and since the advantage in terms of WRMS of the UT1UTC residuals is relatively small, we decided to perform the analysis presented in the following sections using the GMFNL analysis setup. The same outlier criteria as used before were applied for consistency.
The impact of a priori EOP information
For the INT sessions, only the UT1UTC parameter can be estimated while the other EOP have to be kept fixed on their a priori values. Furthermore, the low latency automated analysis of the INT sessions requires predicted EOP since no better information is available in near real time. It is thus important to investigate the errors that propagate from any inaccuracy of the predicted a priori EOP information to the UT1UTC estimates.
The impact of a priori celestial pole offsets
The impact of celestial pole offsets (CPO) on the accuracy of UT1UTC estimates has been investigated by Malkin (2011). CPO describe corrections to the IAU 2000/2006 models for precession and nutation and are attributed, e.g., to errors in precession and/or very lowfrequency nutation terms, as well as the free nutation of the Earth’s liquid core (free core nutation (FCN)) (Malkin 2007). CPO are only available as results from data analysis either as empirical corrections or models fits. Malkin (2011) showed that neglecting CPOmodels in the analysis of INT sessions can lead to systematic influences in UT1UTC of about 1.4 μs.
In our analyses, we use a priori EOP from C04. This means that empirical CPO corrections are included in our analysis already.
The impact of a priori polar motion
The impact of polar motion on the accuracy of UT1UTC estimates has been previously investigated in Nothnagel and Schnell (2008), where it was shown that offsets in polar motion have a directly proportional effect on the UT1UTC estimates.
where D is the number of days elapsed since the Bulletin was released. Thus, for the Bulletin A daily solution, the D is at the most 1 day, whereas for the weekly Bulletin A the maximum is 6 days.
Using Eq. 1, the impact of the accuracy of the polar motion on the UT1UTC estimation was studied with extensive Monte Carlo simulations. The simulations were carried out by adding offsets to the a priori polar motion from C04. These offsets were determined by drawing random values from a normal distribution with zero mean and a standard deviation that is equal to the uncertainty stated in Eq. 1. The prediction period of Bulletin A was divided into 24 time steps of each 0.25 day between 0.25 and 6 days. Additionally, the 1day prediction period for the daily solution was further divided into 0.0625 day steps. In the Monte Carlo simulations, for each of the 1669 sessions, a random offset value for the polar motion was determined 20 times for each time step, and successively UT1UTC was estimated from analysis of the session. This resulted in that more than 1,200,000 analyses were performed. A WRMS of the UT1UTC residuals w.r.t. C04 was computed for each of the 20 runs per time step. These 20 WRMS values were then averaged, thus yielding a total of 36 averaged WRMS values, and their standard deviations were computed to represent a measure of uncertainty.
From this it can be seen that the mean WRMS of the UT1UTC residuals w.r.t. C04 increases steadily as polar motion accuracy declines when the Bulletin A epoch ages. After 1 day, the mean WRMS has increased by 4 to 22 μs, and after 3 days, the value has doubled relative to the standard solution. With the maximum number of days elapsed since the Bulletin A epoch the mean WRMS of the UT1UTC residuals surpasses 53 μs. During the daily solution interval, the WRMS of UT1UTC residuals increase 8 and 20 % after 12 and 24 h, respectively. The predicted a priori polar motion information must not be older than 12 h in order to achieve a WRMS of below 20 μs. In order to attain degradation of less than 5 % in the accuracy of the UT1UTC estimates, a priori polar motion would have to be known with a latency of 6 h. If the estimated accuracy level of the a priori values is known, any conclusions about the impact of using a priori polar motion from sources such as International GNSS Service (IGS) (Dow et al. 2009) UltraRapid solution (IGS Products 2015) on UT1UTC accuracy can also be drawn from Fig. 8.
This shows that outdated polar motion information has a strong impact on the accuracy of the UT1UTC estimate. This result is in good agreement with the theoretical analysis presented in Nothnagel and Schnell (2008).
The impact of a priori UT1UTC accuracy
Impact of estimating station position
Conclusions
Our results confirm that INT sessions can be analysed automatically in near real time and it is possible to obtain accurate UT1UTC estimates from the analysis. Currently c5++ is already used regularly by the Geospatial Information Authority of Japan (GSI) to provide fully automated analysis of INT2 sessions. Based on the experience gained in this study, we consider to perform in the future an automated analysis of the INT1 sessions using c5++ in order to provide daily near realtime UT1UTC.
We find that the choice of using either VMF1 or GMF as mapping function does not have a significant effect on the accuracy of the UT1UTC results. When comparing the WRMS of the UT1UTC residuals derived from four different analysis strategies with different mapping functions, different pressure data, and with or without cable delay data, the differences between the WRMS remain on the order of 0.01 μs. Using meteorological and cable measurements from the station logfiles gives a slightly lower WRMS value for the UT1UTC residuals. The corresponding WRMS reduction is less than 1 μs. However, using the station logfile information caused the formal error of 48 sessions to exceed the outlier criterion of 50 μs. These 48 sessions were excluded from the WRMS calculation. Consequently, there is a benefit in using station logfiles, provided that the weather and cable delay data are reliable. This poses a challenge when the analysis is done in fully automated mode without human interaction to screen the logfile data for outliers and bad data.
Our work shows that correct cable delay readings are of importance and large RMS of the cable delay data can lead to offsets for the UT1UTC results. Otherwise, neglecting cable calibration data seems to have almost no effect on the results when using the particular two stations investigated in this study. However, from a more general point of view, electrical path length changes at other sites that might be involved in the future in INT sessions might show characteristics that require such external data in order to process the observations in an unbiased way.
We can conclude from our investigations that the most significant impact on the possible accuracy of the UT1UTC estimates is due to the availability of recent polar motion values. In order to reach an UT1UTC accuracy of 25 μs or better the a priori polar motion values from Bulletin A must not be older than 1.5 days. To achieve UT1UTC with an accuracy of less than 20 μs, the a priori polar motion from Bulletin A can not be older than 12 h. Furthermore, to guarantee a degradation of less than 5 % in the accuracy of the UT1UTC estimates, a priori polar motion information would be needed with a latency of less than 6 h. If however the difference between the experiment observation time and the Bulletin A epoch exceeds 1 day, we quickly see that the polar motion uncertainty starts to dominate the UT1UTC estimate accuracy. On the other hand, the accuracy of the UT1UTC estimates is not impacted by the uncertainty of the available a priori UT1UTC values. Based on these investigations, we can conclude that out of all studied factors the most significant in producing accurate UT1UTC products is the availability of daily polar motion values.
In agreement with other studies, for example Boehm et al. (2010), we conclude that the current level of accuracy of today’s INT sessions is around 17 μs for UT1UTC. It seems hard to imagine that this situation can be improved unless fundamental changes in the strategy for the INT sessions are implemented. One step forward would be to increase the number of observations as pointed out by Artz et al. (2012). In doing so, the expectation is that not only the precision of the UT1UTC will increase, but also its accuracy. Another potential for improvement might be found in sophisticated scheduling algorithms, as presented by Leek et al. (2015). In general, the nextgeneration VLBI system, VGOS (Petrachenko et al. 2012), promises improvements due to for example broadband observations with fastslewing telescopes. As a part of VGOS, seamless and reliable archives of stationrelated parameters, in particular meteorological data and cable delay data, are anticipated (Neidhardt 2015, personal communication) which will help the realtime automated analysis. Furthermore, refined analysis approaches, e.g. considering correlation between the observations (Gipson 2006) and an advanced stochastic model (Tesmer and Kutterer 2004), might lead to further improvements.
Declarations
Acknowledgements
The International VLBI Service for Geodesy and Astrometry is acknowledged for providing data (Behrend 2013).
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Authors’ Affiliations
References
 Altamimi, Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod.85(8): 457–73. doi:10.1007/s0019001104444.View ArticleGoogle Scholar
 Andersen, PH (2000) Multilevel arc combination with stochastic parameters. J Geod.74: 531–51.View ArticleGoogle Scholar
 Artz, T, Leek J, Nothnagel A, Schumacher M (2012) VLBI Intensive Sessions Revisited. In: Behrend D Baver K (eds)IVS 2012 General Meeting Proceedings, 276–280. NASA/CP2012217504.Google Scholar
 Behrend, D (2013) Data Handling within the International VLBI Service. Dat S J12: WDS81–4. doi:10.2481/dsj.WDS011.Google Scholar
 Bizouard, C, Gambis D (2011) The combined solution C04 for Earth Orientation Parameters consistent with International Terrestrial Reference Frame 2008. https://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.pdf. Accessed 23 Jun 2015.
 Boehm, J, Boehm S, Nilsson T, Pany A, Plank L, Spicakova H, et al (2012) The new Vienna VLBI Software VieVS. In: Kenyon S, Pacino MC, Marti U (eds)Geodesy for, Planet Earth: Proceedings of the 2009 IAG Symposium International Association of Geodesy Symposia Series, 1007–1011. doi:10.1007/9783642203381_126.
 Boehm, J, Hobiger T, Ichikawa R, Kondo T, Koyama Y, Pany A, et al (2010) Asymmetric tropospheric delays from numerical weather models for UT1 determination from VLBI Intensive sessions on the baseline Wettzell–Tsukuba. J Geod84(5): 319–25. doi:10.1007/s001900100370x.View ArticleGoogle Scholar
 Boehm, J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for MediumRange Weather Forecasts operational analysis data. J Geophys Res111(B2). doi:10.1029/2005JB003629.
 Dow, JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod83: 191–8. doi:10.1007/s0019000803003.View ArticleGoogle Scholar
 Fey, AL, Gordon D, Jacobs CS, Ma C, Gaume RA, Arias EF, et al. (2015) The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry. Astron J150(58): 16. doi:10.1088/00046256/150/2/58.Google Scholar
 Gipson, J (2006) Correlation Due to Station Dependent Noise in VLBI. In: Behrend D Baver K (eds)IVS 2006 General Meeting Proceedings, 286–290. NASA/CP2006214140.Google Scholar
 Gipson, J (2012) IVS Working Group 4: VLBI Data Structures. In: Behrend D Baver K (eds)IVS 2012 General Meeting, Proceedings, 212–221. NASA/CP2012217504.Google Scholar
 Gordon, D (2007) NGS Format for VLBI Data Transfer – Revised June 11. http://lacerta.gsfc.nasa.gov/mk5/help/dbngs_format.txt. Accessed 23 Jun 2015.
 Hobiger, T, Otsubo T, Sekido M, Gotoh T, Kubooka T, Takiguchi H (2010) Fully automated VLBI analysis with c5++ for ultrarapid determination of UT1. Earth Planets Space62: 933–937.View ArticleGoogle Scholar
 IGS Products (2015) International GNSS Service. http://igs.org/products. Accessed 3 Sep 2015.
 IERS Bulletin A (2015) IERS Rapid Service Prediction Centre. http://datacenter.iers.org/eop//somos/5Rgv/getTX/6/bulletinaxxviii019.txt. Accessed 4 Aug 2015.
 IERS Operational EOP Series technical descriptions (2015) IERS Earth Orientation Centre. http://hpiers.obspm.fr/eoppc/series/operational/. Accessed 18 Aug 2015.
 IERS Rapid Service Prediction Centre (2015). http://www.usno.navy.mil/USNO/earthorientation. Accessed 12 Aug 2015.
 IVS Data centers (2015). For example ftp://cddis.gsfc.nasa.gov/pub/vlbi/ivsdata/db/. Accessed 23 Jun 2015.
 Lagler, K, Schindelegger M, Boehm J, Krásná H, Nilsson T (2013) GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys Res Lett40: 1069–73. doi:10.1002/grl.50288.View ArticleGoogle Scholar
 Leek, J, Artz T, Nothnagel A (2015) Optimized scheduling of VLBI UT1 intensive sesions for twin telescopes employing impact factor analysis. J Geod: 1–14. doi:10.1007/s0019001508233.
 Ma, C, Sauber JM, Bell LJ, Clark TA, Gordon D, Himwich WE, et al (1990) Measurement of horizontal motions in Alaska using very long baseline interferometry. J Geophys Res95(B13): 21991–2011. doi:10.1029/JB095iB13p21991.View ArticleGoogle Scholar
 Malkin, ZM (2007) Empiric Models of the Earth’s Free Core Nutation. Solar Syst Res41(6): 492–7. doi:10.1134/S0038094607060044.View ArticleGoogle Scholar
 Malkin, ZM (2011) The impact of celestial pole offset modelling on VLBI UT1 intensive results. J Geod85: 617–22. doi:10.1007/s0019001104689.View ArticleGoogle Scholar
 Malkin, ZM (2013) Impact of seasonal station motions on VLBI UT1 intensive results. J Geod87: 505–14. doi:10.1007/s0019001306245.View ArticleGoogle Scholar
 Nilsson, T, Böhm J, Schuh H (2011) Universal time from VLBI singlebaseline observations during CONT08. J Geod85(7): 415–23. doi:10.1007/s0019001004369.View ArticleGoogle Scholar
 Nothnagel, A, Schnell D (2008) The impact of polar motion and nutation errors on UT1 determinations from VLBI Intensive observations. J Geod.82(12): 863–9. doi:10.1007/s0019000802122.View ArticleGoogle Scholar
 Petit, G, Luzum B (eds)2010. IERS Conventions. IERS Technical Note 36. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie. 179 pp.Google Scholar
 Petrachenko, WT, Niell AE, Corey BE, Behrend D, Schuh H, Wresnik J (2012) VLBI2010: next generation VLBI system for geodesy and astrometry. In: Kenyon S et al (eds)Geodesy for Planet Earth: Proceedings of the 2009 IAG Symposium International, Association of Geodesy Symposia Series, 999–1006. doi:10.1007/9783642203381.
 Schuh, H, Behrend D (2012) VLBI: A fascinating technique for geodesy and astrometry. J Geodyn.61: 68–80. doi:10.1016/j.jog.2012.07.007.View ArticleGoogle Scholar
 Sovers, OJ, Fanselow JL, Jacobs CS (1998) Astrometry and geodesy with radio interferometry: experiments, models, results. Rev Mod Phys70(4): 1393–454. doi:10.1103/RevModPhys.70.1393.View ArticleGoogle Scholar
 Teke, K, Böhm J, Mazdak M, Kwak Y, Steigenberger P (2015) GNSS zenith delays and gradients in the analysis ofg VLBI Intensive sessions. Adv Space Res. In Press, Accepted Manuscript. doi:10.1016/j.asr.2015.07.032.
 Tesmer, V, Kutterer H (2004) An Advanced Stochastic Model for VLBI Observations and its Application to VLBI Data Analysis. In: Vanderberg N Baver K (eds)IVS 2004 General Meeting Proceedings, 296–300. NASA/CP2004212255.Google Scholar
 Titov, O, Tesmer V, Boehm J (2004) OCCAM v.6.0 Software for VLBI Data Analysis. In: Vanderberg N Karen B (eds)IVS 2004 General Meeting Proceedings, 267–271. NASA/CP2004212255.Google Scholar
 Vienna University of Technology. Archive of troposphere delay parameters (2015). http://ggosatm.hg.tuwien.ac.at/DELAY/SITE/VLBI/. Accessed 23 Jun 2015.