Biegel RL, Sammis CG (2004) Relating fault mechanics to fault zone structure. Adv Geophys 47:65–111. doi:10.1016/S0065-2687(04)47002-2
Article
Google Scholar
Borradaile GJ (1981) Particulate flow of rock and the formation of cleavage. Tectonophysics 72:305–321. doi:10.1016/0040-1951(81)90243-2
Article
Google Scholar
Bos B, Spiers CJ (2000) Effect of phyllosilicates on fluid-assisted healing of gouge-bearing faults. Earth Planet Sci Lett 184:199–210. doi:10.1016/S0012-821X(00)00304-6
Article
Google Scholar
Boulton C, Carpenter BM, Toy V, Marone C (2012) Physical properties of surface outcrop cataclastic fault rocks, Alpine Fault, New Zealand. Geochem Geophys Geosyst 13:Q01018. doi:10.1029/2011GC003872
Article
Google Scholar
Brace WF, Byerlee JD (1966) Stick-slip as a mechanism for earthquakes. Science 153:990–992. doi:10.1126/science.153.3739.990
Article
Google Scholar
Brantut N, Schubnel A, Rouzaud JN, Brunet F, Shimamoto T (2008) High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics. J Geophys Res 113:B10401. doi:10.1029/2007JB005551
Article
Google Scholar
Brown KM, Kopf A, Underwood MB, Weinberger JL (2003) Compositional and fluid pressure controls on the state of stress on the Nankai subduction thrust: a weak plate boundary. Earth Planet Sci Lett 214:589–603. doi:10.1016/S0012-821X(03)00388-1
Article
Google Scholar
Byerlee JD (1978) Friction of rocks. Pure Appl Geophys 116:615–626
Article
Google Scholar
Byerlee JD, Brace WF (1968) Stick slip, stable sliding, and earthquakes—effect of rock type, pressure, strain rate, and stiffness. J Geophys Res 73:6031–6037. doi:10.1029/JB073i018p06031
Article
Google Scholar
Carpenter BM, Saffer DM, Marone C (2015) Frictional properties of the active San Andreas Fault, at SAFOD: implications for fault strength and slip behavior. J Geophys Res 120:5273–5289. doi:10.1002/2015JB011963
Article
Google Scholar
Collettini C, Niemeijer A, Viti C, Marone C (2009) Fault zone fabric and fault weakness. Nature 462:907–910. doi:10.1038/nature08585
Article
Google Scholar
Di Toro G, Han R, Hirose T, De Paola N, Nielsen S, Mizoguchi K, Ferri F, Cocco M, Shimamoto T (2011) Fault lubrication during earthquakes. Nature 471:494–498. doi:10.1038/nature09838
Article
Google Scholar
Dieterich JH (1972) Time-dependent friction in rocks. J Geophys Res 77:3690–3697. doi:10.1029/JB077i020p03690
Article
Google Scholar
Eberl DD (2003) User’s guide to RockJock—a program for determining quantitative mineralogy from powder X-ray diffraction data. USGS Open-file report 03–78
Faulkner DR, Jackson CAL, Lunn RJ, Schlische RW, Shipton ZK, Wibberley CAJ, Withjackd MO (2010) A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J Struct Geol 32:1557–1575. doi:10.1016/j.jsg.2010.06.009
Article
Google Scholar
Faulkner DR, Mitchell TM, Behnsen J, Hirose T, Shimamoto T (2011) Stuck in the mud? Earthquake nucleation and propagation through accretionary forearcs. Geophys Res Lett 38:L18303. doi:10.1029/2011GL048552
Article
Google Scholar
Han R, Shimamoto T, Hirose T, Ree JH, Ando J (2007) Ultralow friction of carbonate faults caused by thermal decomposition. Science 316:878–881. doi:10.1126/science.1139763
Article
Google Scholar
Han R, Hirose T, Jeong GY, Ando J, Mukoyoshi H (2014) Frictional melting of clayey gouge during seismic fault slip: experimental observation and implications. Geophys Res Lett. doi:10.1002/2014GL061246
Google Scholar
Hirono T, Fujimoto K, Yokoyama T, Hamada Y, Tanikawa W, Tadai O, Mishima T, Tanimizu M, Lin W, Soh W, Song SR (2008a) Clay mineral reactions caused by frictional heating during an earthquake: an example from the Taiwan Chelungpu fault. Geophys Res Lett 35:L16303. doi:10.1029/2008GL034476
Article
Google Scholar
Hirono T, Sakaguchi M, Otsuki K, Sone H, Fujimoto K, Mishima T, Lin W, Tanikawa W, Tanimizu M, Soh W, Yeh E, Song S (2008b) Characterization of slip zone associated with the 1999 Taiwan Chi-Chi earthquake: X-ray CT image analyses and microstructural observations of the Taiwan Chelungpu fault. Tectonophysics 449:63–84. doi:10.1016/j.tecto.2007.12.002
Article
Google Scholar
Hirono T, Tanikawa W, Honda G, Kameda J, Fukuda J, Ishikawa T (2013) Importance of mechanochemical effects on fault slip behavior during earthquakes. Geophys Res Lett 40:2988–2992. doi:10.1002/grl.50609
Article
Google Scholar
Hirono T, Ishikawa T, Masumoto H, Kameda J, Yabuta H, Mukoyoshi H (2014a) Re-evaluation of frictional heat recorded in the dark gouge of the shallow part of a megasplay fault at the Nankai Trough. Tectonophysics 626:157–169. doi:10.1016/j.tecto.2014.04.020
Article
Google Scholar
Hirono T, Kameda J, Kanda H, Tanikawa W, Ishikawa T (2014b) Mineral assemblage anomalies in the slip zone of the 1999 Taiwan Chi-Chi earthquake: ultrafine particles preserved only in the latest slip zone. Geophys Res Lett 41:3052–3059. doi:10.1029/2006GL028050
Article
Google Scholar
Hull J (1988) Thickness-displacement relationships for deformation zones. J Struct Geol 10:431–435. doi:10.1016/0191-8141(88)90020-X
Article
Google Scholar
Icenhower JP, Dove PM (2000) The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength. Geochim Cosmochim Acta 64:4193–4203. doi:10.1016/S0016-7037(00)00487-7
Article
Google Scholar
Ikari MJ, Niemeijer AR, Marone C (2011) The role of fault zone fabric and lithification state on frictional strength, constitutive behavior, and deformation microstructure. J Geophys Res 116:B08404. doi:10.1029/2011JB008264
Article
Google Scholar
Ikari MJ, Ito Y, Ujiie K, Kopf AJ (2015) Spectrum of slip behaviour in Tohoku fault zone, samples at plate tectonic slip rates. Nat Geosci 8:870–874. doi:10.1038/ngeo2547
Article
Google Scholar
Ishihara S, Murakami H (2006) Fractionated ilmenite-series granites in Southwest Japan: source magma for REE-Sn-W mineralizations. Resour Geol 56:245–256. doi:10.1111/j.1751-3928.2006.tb00282.x
Article
Google Scholar
Karner SL, Marone C (2001) Fractional restrengthening in simulated fault gouge: effect of shear load perturbations. J Geophys Res 106:19319–19337. doi:10.1029/2001JB000263
Article
Google Scholar
Kato N, Hirono T, Ishikawa T, Ohtani T (2015) Mineralogical and geochemical characteristics of the fault gouge at the Tase outcrop, the Atera Fault. Active Fault Res 43:1–16 (in Japanese with English abstract)
Google Scholar
Li YG, Vidale JE (2001) Healing of the shallow fault zone from 1994–1998 after the 1992 M7.5 Landers, California, earthquake. Geophys Res Lett 28:2999–3002. doi:10.1029/2001GL012922
Article
Google Scholar
Lockner DA, Morrow C, Moore D, Hickman S (2011) Low strength of deep San Andreas fault gouge from SAFOD core. Nature 472:82–85. doi:10.1038/nature09927
Article
Google Scholar
Ma KF, Tanaka H, Song S, Wang C, Hung J, Song Y, Yeh E, Soh W, Sone H, Kuo L, Wu H (2006) Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature 444:473–476. doi:10.1038/nature05253
Article
Google Scholar
Mizoguchi K, Hirose T, Shimamoto T, Fukuyama E (2007) Reconstruction of seismic faulting by high-velocity friction, experiments: an example of the 1995 Kobe earthquake. Geophys Res Lett 34:L01308. doi:10.1029/2006GL027931
Article
Google Scholar
Mizoguchi K, Takahashi M, Tanikawa W, Masuda K, Song SR, Soh W (2008) Frictional strength of fault gouge in Taiwan Chelungpu fault obtained from TCDP Hole B. Tectonophysics 460:198–205. doi:10.1016/j.tecto.2008.08.009
Article
Google Scholar
Mizoguchi K, Hirose T, Shimamoto T, Fukuyama E (2009) High-velocity frictional behavior and microstructure evolution of fault gouge obtained from Nojima fault, southwest Japan. Tectonophysics 471:285–296. doi:10.1016/j.tecto.2009.02.033
Article
Google Scholar
Muhuri SK, Dewers TA, Scott TE Jr, Reches Z (2003) Interseismic fault strengthening and earthquake-slip instability: friction or cohesion? Geology 31:881–884. doi:10.1130/G19601.1
Article
Google Scholar
Niemeijer A, Marone C, Elsworth D (2008) Healing of simulated fault gouges aided by pressure solution: results from rock analogue experiments. J Geophys Res 113:B04204. doi:10.1029/2007JB005376
Article
Google Scholar
Niemeijer A, Di Toro G, Griffith WA, Bistacchi A, Smith SAF, Nielsen S (2012) Inferring earthquake physics and chemistry using an integrated field and laboratory approach. J Struct Geol 39:2–36. doi:10.1016/j.jsg.2012.02.018
Article
Google Scholar
Olsen MP, Scholz CH, Léger A (1998) Healing and sealing of a simulated fault gouge under hydrothermal conditions: implications for fault healing. J Geophys Res 103:7421–7430. doi:10.1029/97JB03402
Article
Google Scholar
Oohashi K, Hirose T, Takahashi M, Tanikawa W (2015) Dynamic weakening of smectite-bearing faults at intermediate velocities: implications for subduction zone earthquakes. J Geophys Res 120:1572–1586. doi:10.1002/2015JB011881
Article
Google Scholar
Power WL, Tullis TE, Brown SR, Boitnott GN, Scholz CH (1987) Roughness of natural fault surfaces. Geophys Res Lett 14:29–32. doi:10.1029/GL014i001p00029
Article
Google Scholar
Reches Z, Lockner DA (2010) Fault weakening and earthquake instability by powder lubrication. Nature 467:452–455. doi:10.1038/nature09348
Article
Google Scholar
Rowe CD, Griffith WA (2015) Do faults preserve a record of seismic slip: a second opinion. J Struct Geol 78:1–26. doi:10.1016/j.jsg.2015.06.006
Article
Google Scholar
Rutter EH, Maddock RH, Hall SH, White SH (1986) Comparative microstructures of natural and experimentally produced clay-bearing fault gouges. Pure appl Geophys 124:3–30
Article
Google Scholar
Scholz CH (1982) Scaling laws for large earthquakes: consequences for physical models. Bull Seismol Soc Am 72:1–14
Google Scholar
Scholz CH (1987) Wear and gouge formation in brittle faulting. Geology 15:493–495
Article
Google Scholar
Scholz CH (2002) The mechanisms of earthquake faulting. Cambridge Univ Press, New York
Book
Google Scholar
Shimamoto T, Logan JM (1981) Effects of simulated fault gouge on the sliding behavior of Tennessee sandstone: nonclay gouges. J Geophys Res 86:2902–2914. doi:10.1029/JB086iB04p02902
Article
Google Scholar
Sibson RH (1973) Interactions between temperature and fluid pressure during earthquake faulting—a mechanism for partial or total stress relief. Nature 243:66–68. doi:10.1038/physci243066a0
Google Scholar
Solum JG, van der Pluijm BA, Peacor DR (2005) Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah. J Struct Geol 27:1563–1576. doi:10.1016/j.jsg.2005.05.002
Article
Google Scholar
Sugimura A, Matsuda T (1965) Atera fault and its displacement vectors. Geol Soc Am Bull 76:509–522
Article
Google Scholar
Tadokoro K, Ando M (2002) Evidence for rapid fault healing derived from temporal changes in S wave splitting. Geophys Res Lett 29:6-1–6-4. doi:10.1029/2001GL013644
Article
Google Scholar
Takahashi M, Mizoguchi M, Kitamura K, Masuda K (2007) Effects of clay content on the frictional strength and fluid transport property of faults. J Geophys Res 112:B08206. doi:10.1029/2006JB004678
Google Scholar
Tenthorey E, Scholz CH, Aharonov E, Léger A (1998) Precipitation sealing and diagenesis: 1. Experimental results. J Geophys Res 103:23951–23967. doi:10.1029/98JB02229
Article
Google Scholar
Toda S, Inoue D (1994) The latest activity of the Atera fault: a possibility of the 1586 Tensho earthquake. Zisin 47:73–77 (in Japanese with English abstract)
Google Scholar
Toda S, Inoue D (1995) Paleoseismicity of the Atera fault system and 1586 Tensho earthquake: trenching studies at Ogo, Aonohara and Dendahara, Central Japan. Zisin 48:401–421 (in Japanese with English abstract)
Google Scholar
Tsukuda E, Awata Y, Yamazaki H, Sugiyama Y, Shimokawa K, Mizuno K (1993) Strip map of the Atera fault system. Geol Surv Jpn Tectonic Map Series 7:1–39 (in Japanese)
Google Scholar
Vermilye JM, Scholz CH (1998) The process zone: a microstructural view of fault growth. J Geophys Res 103:12223–12237. doi:10.1029/98JB00957
Article
Google Scholar
Vrolijk P, van der Pluijm BA (1999) Clay gouge. J Struct Geol 21:1039–1048. doi:10.1016/S0191-8141(99)00103-0
Article
Google Scholar
Wibberley CAJ, Shimamoto T (2005) Earthquake slip weakening and asperities explained by thermal pressurization. Nature 436:689–692. doi:10.1038/nature03901
Article
Google Scholar
Yund RA, Blanpied ML, Tullis TE, Weeks JD (1990) Amorphous material in high strain experimental fault gouges. J Geophys Res 95:15589–15602. doi:10.1029/JB095iB10p15589
Article
Google Scholar