Behnsen J, Faulkner DR (2012) The effect of mineralogy and effective normal stress on frictional strength of sheet silicates. J Struct Geol 42:49–61. https://doi.org/10.1016/j.jsg.2012.06.015
Article
Google Scholar
Behnsen J, Faulkner DR (2013) Permeability and frictional strength of cation-exchanged montmorillonite. J Geophys Res Solid Earth 118:2788–2798. https://doi.org/10.1002/jgrb.50226
Article
Google Scholar
Bird P (1984) Hydration-phase diagrams and friction of montmorillonite under laboratory and geologic conditions, with implications for shale compaction, slope stability, and strength of fault gouge. Tectonophysics 107:235–260
Article
Google Scholar
Brown KM, Kopf A, Underwood MB, Weinberger JL (2003) Compositional and fluid pressure controls on the state of stress on the Nankai subduction thrust: a weak plate boundary. Earth Planet Sci Lett 214:589–603. https://doi.org/10.1016/S0012-821X(03)00388-1
Article
Google Scholar
Bullock RJ, De Paola N, Holdsworth RE (2015) An experimental investigation into the role of phyllosilicate content on earthquake propagation during seismic slip in carbonate faults. J Geophys Res Solid Earth 120:3187–3207. https://doi.org/10.1002/2015JB011914
Article
Google Scholar
Byerlee J (1978) Friction of rocks. Pure Appl Geophys 116:615–626
Article
Google Scholar
Carpenter BM, Ikari MJ, Marone C (2016) Laboratory observations of time-dependent frictional strengthening and stress relaxation in natural and synthetic fault gouges. J Geophys Res Solid Earth 121:1183–1201. https://doi.org/10.1002/2015JB012136
Article
Google Scholar
Colten-Bradley VA (1987) Role of pressure in smectite dehydration—effects on geopressure and smectite-to-illite transformation. Am Assoc Pet Geol Bull 71:1414–1427
Google Scholar
Deng X, Underwood MB (2001) Abundance of smectite and the location of a plate-boundary fault, Barbados accretionary prism. Bull Geol Soc Am 113:495–507
Article
Google Scholar
Faulkner DR, Mitchell TM, Behnsen J, Hirose T, Shimamoto T (2011) Stuck in the mud? Earthquake nucleation and propagation through accretionary forearcs. Geophys Res Lett 38:L18303. https://doi.org/10.1029/2011GL048552
Article
Google Scholar
Fujita T, Sugita Y, Toida M (2011) Experimental studies on penetration of pulverized clay-based grout. J Energy Power Eng 5:419–427
Google Scholar
Haines SH, Kaproth B, Marone C, Saffer D, van der Pluijm B (2013) Shear zones in clay-rich fault gouge: a laboratory study of fabric development and evolution. J Struct Geol 51:206–225. https://doi.org/10.1016/j.jsg.2013.01.002
Article
Google Scholar
Ikari MJ, Saffer DM, Marone C (2007) Effect of hydration state on the frictional properties of montmorillonite-based fault gouge. J Geophys Res Solid Earth 112:B06423. https://doi.org/10.1029/2006JB004748
Article
Google Scholar
Ito M, Okamoto M, Shibata M, Sasaki Y, Danbara T, Suzuki K, Watanabe T (1993) Mineral composition analysis of bentonite. PNC TN8430, Japan Atomic Energy Agency (in Japanese)
Kameda J, Shimizu M, Ujiie K, Hirose T, Ikari M, Mori J, Oohashi K, Kimura G (2015) Pelagic smectite as an important factor in tsunamigenic slip along the Japan Trench. Geology 43:155–158. https://doi.org/10.1130/G35948.1
Article
Google Scholar
Kawai K, Sakuma H, Katayama I, Tamura K (2015) Frictional characteristics of single and polycrystalline muscovite and influence of fluid chemistry. J Geophys Res Solid Earth 120:6209–6218. https://doi.org/10.1002/2015JB012286
Article
Google Scholar
Kubo T, Katayama I (2015) Effect of temperature on the frictional behavior of smectite and illite. J Mineral Petrol Sci 110:293–299. https://doi.org/10.2465/jmps.150421
Article
Google Scholar
Kuo LW, Song SR, Yeh EC, Chen HF (2009) Clay mineral anomalies in the fault zone of the Chelungpu fault, Taiwan, and their implications. Geophys Res Lett 36:L18306. https://doi.org/10.1029/2009GL039269
Article
Google Scholar
Logan JM, Rauenzahn KA (1987) Frictional dependence of gouge mixtures of quartz and montmorillonite on velocity, composition and fabric. Tectonophysics 144:87–108
Article
Google Scholar
Lupini JF, Skinner AE, Vaughan PR (1981) The drained residual strength of cohesive soils. Géotechnique 31:181–213
Article
Google Scholar
Mooney RW, Keenan AG, Wood LA (1952) Adsorption of water vapor by montmorillonite. II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction. J Am Chem Soc 74:1371–1374
Article
Google Scholar
Moore DE, Lockner DA (2004) Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals. J Geophys Res 109:B03401. https://doi.org/10.1029/2003JB002582
Google Scholar
Moore DE, Lockner DA (2007) Friction of the smectite clay montmorillonite. In: Dixon T, Moore C (eds) The seismogenic zone of subduction thrust faults. Columbia University Press, New York, pp 317–345
Google Scholar
Morodome S, Kawamura K (2009) Swelling behavior of Na- and Ca-montmorillonite up to 150 °C by in situ X-ray diffraction experiments. Clays Clay Miner 57:150–160. https://doi.org/10.1346/CCMN.2009.0570202
Article
Google Scholar
Morrow C, Radney B, Byerlee J (1992) Frictional strength and the effective pressure law of montmorillonite and illite clays. In: Evans B, Wong T-F (eds) Fault mechanics and transport properties of rocks. Academic Press, New York, pp 69–88
Google Scholar
Morrow CA, Moore DE, Lockner DA (2000) The effect of mineral bond strength and adsorbed water on fault gouge frictional strength. Geophys Res Lett 27:815–818. https://doi.org/10.1029/1999GL008401
Article
Google Scholar
Morrow CA, Moore DE, Lockner DA (2017) Frictional strength of wet and dry montmorillonite. J Geophys Res Solid Earth. https://doi.org/10.1002/2016JB013658
Google Scholar
Müller-Vonmoos M, Løken T (1989) The shearing behaviour of clays. Appl Clay Sci 4:125–141. https://doi.org/10.1016/0169-1317(89)90004-5
Article
Google Scholar
Noda H, Shimamoto T (2009) Constitutive properties of clayey fault gouge from the Hanaore fault zone, southwest Japan. J Geophys Res Solid Earth 114:B04409. https://doi.org/10.1029/2008JB005683
Google Scholar
Ohtani T, Fujimoto K, Ito H, Tanaka H, Tomida N, Higuchi T (2000) Fault rocks and past to recent fluid characteristics from the borehole survey of the Nojima fault ruptured in the 1995 Kobe earthquake, southwest Japan. J Geophys Res Solid Earth 105:16161–16171. https://doi.org/10.1029/2000JB900086
Article
Google Scholar
Oohashi K, Hirose T, Takahashi M, Tanikawa W (2015) Dynamic weakening of smectite-bearing faults at intermediate velocities: implications for subduction zone earthquakes. J Geophys Res Solid Earth 120:1572–1586. https://doi.org/10.1002/2015JB011881
Article
Google Scholar
Renard F, Ortoleva P (1997) Water films at grain-grain contacts: Debye–Hückel, osmotic model of stress, salinity, and mineralogy dependence. Geochim Cosmochim Acta 61:1963–1970
Article
Google Scholar
Saffer DM, Marone C (2003) Comparison of smectite- and illite-rich gouge frictional properties: application to the updip limit of the seismogenic zone along subduction megathrusts. Earth Planet Sci Lett 215:219–235. https://doi.org/10.1016/S0012-821X(03)00424-2
Article
Google Scholar
Saffer DM, Frye KM, Marone C, Mair K (2001) Laboratory results indicating complex and potentially unstable frictional behavior of smectite clay. Geophys Res Lett 28:2297–2300
Article
Google Scholar
Sakuma H, Suehara S (2015) Interlayer bonding energy of layered minerals: implication for the relationship with friction coefficient. J Geophys Res Solid Earth 120:2212–2219. https://doi.org/10.1002/2015JB011900
Article
Google Scholar
Salles F, Bildstein O, Douillard JM, Jullien M, Raynal J, Van Damme H (2010) On the cation dependence of interlamellar and interparticular water and swelling in smectite clays. Langmuir 26:5028–5037. https://doi.org/10.1021/la1002868
Article
Google Scholar
Schleicher AM, Van Der Pluijm BA, Solum JG, Warr LN (2006) Origin and significance of clay-coated fractures in mudrock fragments of the SAFOD borehole (Parkfield, California). Geophys Res Lett. https://doi.org/10.1029/2006gl026505
Google Scholar
Shimamoto T, Logan JM (1981) Effects of simulated clay gouges on the sliding behavior of Tennessee sandston. Tectonophysics 75:243–255. https://doi.org/10.1016/0040-1951(81)90276-6
Article
Google Scholar
Solum JG, Hickman SH, Lockner DA, Moore DE, Van Der Pluijm BA, Schleicher AM, Evans JP (2006) Mineralogical characterization of protolith and fault rocks from the SAFOD main hole. Geophys Res Lett 33:L21314. https://doi.org/10.1029/2006GL027285
Article
Google Scholar
Summers R, Byerlee J (1977a) A note on the effect of fault gouge composition on the stability of frictional sliding. Int J Rock Mech Min Sci Geomech Abstr 14:155–160
Article
Google Scholar
Summers R, Byerlee J (1977b) Summary of results of frictional sliding studies, at confining pressures up to 6.98 kb, in selected materials. In: U.S. Geological Survey Open File Rep
Takahashi M, Mizoguchi K, Kitamura K, Masuda K (2007) Effects of clay content on the frictional strength and fluid transport property of faults. J Geophys Res 112:B08206. https://doi.org/10.1029/2006JB004678
Google Scholar
Teich-McGoldrick SL, Greathouse JA, Jové-Colón CF, Cygan RT (2015) Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: comparison of temperature, interlayer cation, and charge location effects. J Phys Chem C 119:20880–20891
Article
Google Scholar
Tembe S, Lockner DA, Wong T-F (2010) Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: binary and ternary mixtures of quartz, illite, and montmorillonite. J Geophys Res 115:B03416. https://doi.org/10.1029/2009JB006383
Google Scholar
Tetens O (1930) Über einige meteorologische Begriffe. Z Geophys 6:297–309 (in German)
Google Scholar
Underwood MB (2007) Sediment inputs to subduction zones why lithostratigraphy and clay mineralogy matter. In: Dixon T, Moore C (eds) The seismogenic zone of subduction thrust faults. Columbia University Press, New York, pp 42–85
Google Scholar
Vrolijk P, Van Der Pluijm BA (1999) Clay gouge. J Struct Geol 21:1039–1048. https://doi.org/10.1016/S0191-8141(99)00103-0
Article
Google Scholar
Wu FT (1978) Mineralogy and physical nature of clay gouge. Pure appl Geophys 116:655–689
Article
Google Scholar