Abe Y, Ohkura T, Shibutani T, Hirahara K, Kato M (2010) Crustal structure beneath Aso Caldera, Southwest Japan, as derived from receiver function analysis. J Volcanol Geotherm Res 195:1–12. https://doi.org/10.1016/j.jvolgeores.2010.05.011
Article
Google Scholar
Abe Y, Ohkura T, Shibutani T, Hirahara K, Yoshikawa S, Inoue H (2016) Low-velocity zones in the crust beneath Aso caldera, Kyushu, Japan, derived from receiver function analyses. J Geophys Res 122:2013–2033. https://doi.org/10.1002/2016JB013686
Google Scholar
Bodruddoza Mia M, Nishijima J, Fujimitsu Y (2014) Exploration and monitoring geothermal activity using Landsat ETM + images - a case study at Aso volcanic area in Japan. J Volcanol Geotherm Res 275:14–21. https://doi.org/10.1016/j.jvolgeores.2014.02.008
Article
Google Scholar
Chiodini G, Vilardo G, Augusti V, Granieri D, Caliro S, Minopoli C, Terranova C (2007) Thermal monitoring of hydrothermal activity by permanent infrared automatic stations: results obtained at Solfatara di Pozzuoli, Campi Flegrei (Italy). J Geophys Res. https://doi.org/10.1029/2007JB005140
Google Scholar
Christenson B, Németh K, Rouwet D, Tassi F, Vandemeulebrouck J, Varekamp JC (2015) Volcanic lakes. In: Rouwet D, Christenson B, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes. IAVCEI advances in volcanology. pp 1–20. https://doi.org/10.1007/978-3-642-36833-2
Cigolini C, Laiolo M, Bertolino S (2008) Probing stromboli volcano from the mantle to paroxysmal eruptions. In: Zellmer G, Annen C (eds) Dynamics of crustal magma transfer, storage, and differentiation-integrating geochemical and geophysical constraints. Geological Society London Spec Pubbl vol 304, pp 33–70. https://doi.org/10.1144/sp304.3
Cigolini C, Laiolo M, Coppola D (2015) Revisiting the last major eruptions of Stromboli volcano: inferences on the role of volatiles during magma storage and decompression. In: Zellmer G (ed) The role of volaties in the genesis, evolution and eruption of arc magmas. Geological Society of London Spec Pubbl vol 410, pp 143–177. http://dx.doi.org/10.1144/SP410.3
Committee for Catalog of Quaternary Volcanoes in Japan (1999) Catalog of quaternary volcanoes in Japan, Ver. 1.0. The Volcanol Soc of Japan Tokyo Japan: CD-ROM
Coppola D, Cigolini C (2013) Thermal regimes and effusive trends at Nyamuragira volcano (DRC) from MODIS infrared data. Bull Volcanol 75:1–15. https://doi.org/10.1007/s00445-013-0744-z
Article
Google Scholar
Coppola D, Laiolo M, Piscopo D, Cigolini C (2013) Rheological control on the radiant density of active lava flows and domes. J Volcanol Geotherm Res 249:39–48. https://doi.org/10.1016/j.jvolgeores.2011.12.001
Article
Google Scholar
Coppola D, Laiolo M, Delle Donne D, Ripepe M, Cigolini C (2014) Hot-spot detection and characterization of strombolian activity from MODIS infrared data. Int J Remote Sens 35(9):3403–3426. https://doi.org/10.1080/01431161.2014.903354
Article
Google Scholar
Coppola D, Macedo O, Ramos D, Finizola A, Delle Donne D, del Carpio J, White McCausland W, Centeno R, Rivera M, Apaza F, Callata B, Chilo W, Cigolini C, Laiolo M, Lazarte I, Machaca R, Masias P, Ortega M, Puma N, Taipe E (2015) Magma extrusion during the Ubinas 2013–2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring. J Volcanol Geotherm Res 302:199–210. https://doi.org/10.1016/j.jvolgeores.2015.07.005
Article
Google Scholar
Coppola D, Laiolo M, Cigolini C, Delle Donne D, Ripepe M (2016a) Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system. In: Harris AJL, De Groeve T, Garel F, Carn SA (eds) Detecting, modelling and responding to effusive eruptions. Geol Soc Lond Spec Publ vol 426, pp 181–206. http://dx.doi.org/10.1144/SP426.5
Coppola D, Laiolo M, Lara LE, Cigolini C, Orozco G (2016b) The 2008 “silent” eruption of Nevados de Chillán (Chile) detected fromspace: effusive rates and trends from the MIROVA system. J Volcanol Geotherm Res 327:322–329. https://doi.org/10.1016/j.jvolgeores.2016.08.016
Article
Google Scholar
Coppola D, Campion R, Laiolo M, Cuoco E, Balagizi C, Ripepe M, Cigolini C, Tedesco D (2016c) Birth of a lava lake: nyamulagira volcano 2011–2015. Bull Volcanol 78(20):1–13. https://doi.org/10.1007/s00445-016-1014-7
Google Scholar
Coppola D, Di Muro A, Peltier A, Villeneuve N, Ferrazzini V, Favalli M, Bachèlery P, Gurioli L, Harris AJL, Moune S, Vlastélic I, Galle B, Arellano S, Aiuppa A (2017a) Shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (La Réunion Island). Earth Planet Sci Lett 463:13–24. https://doi.org/10.1016/j.epsl.2017.01.024
Article
Google Scholar
Coppola D, Ripepe M, Laiolo M, Cigolini C (2017b) Modelling satellite-derived magma discharge to explain caldera collapse. Geology 45(6):523–526. https://doi.org/10.1130/G38866.1
Article
Google Scholar
Dean KG, Servilla M, Roach A, Foster B, Engle K (1998) Satellite monitoring of remote volcanoes improves study efforts in Alaska. EOS Trans Am Geophys Union 79:422–423
Article
Google Scholar
Dehn J, Dean KG, Engle K, Izbekov P (2002) Thermal precursors in satellite images of the 1999 eruption of Shishaldin Volcano. Bull Volcanol 64(8):525–534. https://doi.org/10.1007/s00445-002-0227-0
Article
Google Scholar
Fischer TP, Ramírez C, Mora-Amador RA, Hilton DR, Barnes JD, Sharp ZD, Le Brun M, de Moor JM, Barry PH, Füri E, Shaw AM (2015) Temporal variations in fumarole gas chemistry at Poás volcano, Costa Rica. J Volcanol Geotherm Res 294:56–70. https://doi.org/10.1016/j.jvolgeores.2015.02.002
Article
Google Scholar
Geographical Survey Institute (2004) Crustal deformations around Aso volcano. Report of Coordinating Committee for Prediction of Volcanic Eruptions vol 88, pp 106–110
Global Volcanism Program (2015) Report on Asosan (Japan). In: Wunderman R (ed) Bulletin of the global volcanism network. Smithsonian Institution and US Geological Survey vol 40, p 2
Global Volcanism Program (2016) Report on Asosan (Japan). In: Sennert SK (ed) Weekly volcanic activity report. Smithsonian Institution and US Geological Survey: 20 April-26 April 2016
Global Volcanism Program (2017) Report on Asosan (Japan). In: Venzke E (ed) Bulletin of the global volcanism network smithsonian institution vol 42, p 5
Harris AJL (2013) Thermal remote sensing of active volcanoes. A user’s Manual. Cambridge University Press, Cambridge, p 736
Book
Google Scholar
Harris AJL, Stevenson DS (1997) Thermal observations of degassing open conduits and fumaroles at Stromboli and Vulcano using remotely sensed data. J Volcanol Geotherm Res 76:175–198. https://doi.org/10.1016/S0377-0273(96)00097-2
Article
Google Scholar
Harris AJL, Villeneuve N, Di Muro A, Ferrazzini V, Peltier A, Coppola D, Favalli M, Bachèlery P, Froger J-L, Gurioli L, Moune S, Vlastélic I, Galle B, Arellano S (2017) Effusive crises at Piton de la Fournaise 2014–2015: a review of a multi-national response model. J Appl Volcanol 6(1):11. https://doi.org/10.1186/s13617-017-0062-9
Article
Google Scholar
Hunter AG (1998) Intracrustal controls on the coexistence of tholeiitic and calc-alkaline magma series at Aso Volcano, SW Japan. J Petrol 39(7):1255–1284
Article
Google Scholar
Hurst T, Hashimoto T, Terada A (2015) Crater lake energy and mass balance. In: Rouwet D, Christenson B, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes. IAVCEI Advances in Volcanology, pp 307–321. https://doi.org/10.1007/978-3-642-36833-2_13
Ikebe S, Watanabe I, Miyabuchi Y (2008) The sequence and style of the 1988–1995 eruptions of Nakadake Aso Volcano, Kyushu, Japan. Bull Volcanol Soc Japan 53:15–33 (in Japanese with English abstract)
Google Scholar
Japan Meteorological Agency (2013) National catalogue of the active volcanoes in Japan, 4th edn. http://www.data.jma.go.jp/svd/vois/data/tokyo/STOCK/souran_eng/volcanoes/084_asosan.pdf
Kagiyama T (1981) Evaluation methods of heat discharge and their applications to the major active volcanoes in Japan. J Volcanol Geotherm Res 9:87–97
Article
Google Scholar
Kamata H, Kodama K (1994) Tectonics of an arc-arc junction: an example from Kyushu Island at the junction of the Southwest Japan Arc and the Ryukyu Arc. Tectonophysics 233:69–81
Article
Google Scholar
Kaneko K, Koyaguchi T, Takahashi T (2008) Crustal processes of magmas in large-scale silicic volcanism—a review and new insights on Aso volcano. Chikyu Mon Gogai 60:187–197
Google Scholar
Koike K, Yoshinaga T, Asaue H (2014) Characterizing long-term radon concentration changes in a geothermal area for correlation with volcanic earthquakes and reservoir temperatures: a case study from Mt. Aso, southwestern Japan. J Volcanol Geotherm Res 275:85–102. https://doi.org/10.1016/j.jvolgeores.2014.02.007
Article
Google Scholar
Laiolo M, Coppola D, Barahona F, Benítez JE, Cigolini C, Escobar D, Funes R, Gutierrez E, Henriquez B, Hernandez A, Montalvoe F, Olmos R, Ripepe M, Finizola A (2017) Evidences of volcanic unrest on high-temperature fumaroles by satellite thermal monitoring: the case of Santa Ana volcano, El Salvador. J Volcanol Geotherm Res 340:170–179. https://doi.org/10.1016/j.jvolgeores.2017.04.013
Article
Google Scholar
Matsumoto A, Uto K, Ono K, Watanabe K (1991) K-Ar age determinations for Aso volcanic rocks—concordance with volcanostratigraphy and application to pyroclastic flows. Programme Abstr Volcanol Soc Jpn 2:73
Google Scholar
Matsushima N, Kazahaya K, Saito G, Shinohara H (2003) Mass and heat flux of volcanic gas discharging from the summit crater of Iwodake volcano, Satsuma-Iwojima, Japan, during 1996–1999. J Volcanol Geotherm Res 126:285–301
Article
Google Scholar
McKee K, Fee D, Yokoo A, Matoza RS, Kim K (2017) Analysis of gas jetting and fumarole acoustics at Aso Volcano, Japan. J Volcanol Geotherm Res 340:16–29. https://doi.org/10.1016/j.jvolgeores.2017.03.029
Article
Google Scholar
Miyabuchi Y, Sugiyama S (2011) 90,000-year phytolith record from tephra section at the northeastern rim of Aso caldera, Japan. Quat Int 246(1):239–246
Article
Google Scholar
Miyabuchi Y, Watanabe K, Egawa Y (2006) Bomb-rich basaltic pyroclastic flow deposit from Nakadake, Aso Volcano, southwestern Japan. J Volcanol Geotherm Res 155:90–103
Article
Google Scholar
Miyabuchi Y, Ikebe S, Watanabe K (2008) Geological constraints on the 2003–2005 ash emissions from the Nakadake crater lake, Aso volcano Japan. J Volcanol Geotherm Res 178(2):169–183. https://doi.org/10.1016/j.jvolgeores.2008.06.025
Article
Google Scholar
Miyoshi M, Shinmura T, Sumino H, Sano T, Miyabuchi Y, Mori Y, Inakura H, Furukawa K, Uno K, Hasenaka T, Nagao K, Arakawa Y, Yamamoto Y (2013) Lateral magma intrusion from a caldera-forming magma chamber: constraints from geochronology and geochemistry of volcanic products from lateral cones around the Aso caldera, SW Japan. Chem Geol 352:2002–2210
Article
Google Scholar
Murphy SW, de Souza Filho CR, Wright R, Sabatino G, Pabon RC (2017) HOTMAP: global hot target detection at moderate spatial resolution. Remote Sens Environ 177:78–88
Article
Google Scholar
Murphy S, Wright R, Rouwet D (2018) Color and temperature of the crater lakes at Kelimutu volcano through time. Bull Volcanol 80(1):2. https://doi.org/10.1007/s00445-017-1172-2
Article
Google Scholar
Németh K, Cronin SJ, Charley D, Harrison M, Garae E (2006) Exploding lakes in Vanuatu “Surtseyan-style” eruptions witnessed on Ambae Island. Episodes 29(2):87–92
Google Scholar
Nobile A, Acocella V, Ruch J, Aoki Y, Borgstrom S, Siniscalchi V, Geshi N (2017) Steady subsidence of a repeatedly erupting caldera through InSAR observations: Aso, Japan. Bull Volcanol 79:32. https://doi.org/10.1007/s00445-017-1112-1
Article
Google Scholar
Ohkura T, Oikawa J (2012) GPS observation of crustal deformation at Aso volcano. Chikyu Mon Gogay 34(12):706–711
Google Scholar
Ohsawa S, Saito T, Yoshikawa S, Mawatari H, Yamada M, Amita K, Takamatsu N, Sudo Y, Kagiyama T (2010) Color change of lake water at the active crater lake of Aso volcano, Yudamari, Japan: Is it in response to change in water quality induced by volcanic activity? Limnology 11:207–215. https://doi.org/10.1007/s10201-009-0304-6
Article
Google Scholar
Onda Y, Ohsawa S, Takamatsu N (2003) A colorimetric and geochemical study of the coloration factor of hyper-acid active crater lakes (in Japanese). Jpn J Limnol 64:1–10 (in Japanese with Abstract in English)
Article
Google Scholar
Ono K, Watanabe K (1985) Geological map of Aso volcano. Geol Surv, Japan
Google Scholar
Ono K, Watanabe K, Hoshizumi H, Ikebe S (1996) Ash eruption of the Naka-dake crater, Aso volcano, southwestern Japan. Bull Volcanol 66:137–148
Google Scholar
Oppenheimer C (1993) Infrared surveillance of crater lakes using satellite data. J Volcanol Geotherm Res 55(1–2):117–128. https://doi.org/10.1016/0377-0273(93)90093-7
Article
Google Scholar
Oppenheimer C (1996) Crater lake heat losses estimated by remote sensing. Geophys Res Lett 23(14):1793–1796. https://doi.org/10.1029/96GL01591
Article
Google Scholar
Oppenheimer C (1997) Remote sensing of the color and temperatures of volcanic lakes. Int J Rem Sens 18(1):5–37. https://doi.org/10.1080/014311697219259
Article
Google Scholar
Patrick MR, Smellie JL, Harris AJL, Wright R, Dean K, Izbekov P, Garbeil H, Pilger E (2005) First recorded eruption of Belinda volcano (Montagu Island), South Sandwich Islands. Bull Volcanol 67:415–422. https://doi.org/10.1007/s00445-004-0382-6
Article
Google Scholar
Ramsey MS, Harris AJL (2012) Volcanology 2020: how will thermal remote sensing of volcanic surface activity evolve over the next decade? J Volcanol Geotherm Res 249:217–233. https://doi.org/10.1016/j.jvolgeores.2012.05.011
Article
Google Scholar
Research group for active faults of Japan (1991) Active faults in Japan. Sheet maps and inventories, revised edn. University of Tokyo Press, Tokyo
Google Scholar
Rothery DA, Coppola D, Saunders C (2005) Analysis of volcanic activity patterns using MODIS thermal alerts. Bull Volcanol 67(6):539–556. https://doi.org/10.1007/s00445-004-0393-3
Article
Google Scholar
Rouwet D, Tassi F (2011) Geochemical monitoring of volcanic lakes. A generalized box model for active crater lakes. Ann Geophys 54(2):161–173. https://doi.org/10.4401/ag-5035
Google Scholar
Sekioka M (1983) Proposal of a convenient version of the heat balance technique estimating heat flux on geothermal and volcanic fields by means of infrared remote sensing. Mem Natl Def Acad Jpn 23(2):95–103
Google Scholar
Sekioka M, Yuhara K (1974) Heat flux estimation in geothermal areas based on the heat balance of the ground surface. J Geophys Res 79:2053–2058
Article
Google Scholar
Shinohara H, Yoshikawa S, Miyabuchi Y (2015) Degassing activity of a volcanic crater lake: Volcanic plume measurements at the Yudamari crater lake: Aso volcano, Japan. In: Rouwet D, Christenson B, Tassi F, Vandemeulebrouck J (eds) Volcanic Lakes. Springer, Heidelberg, p 201. https://doi.org/10.1007/978-3-642-36833-2_8
Google Scholar
Sudo Y (2001) The character of volcanic activity at Aso volcano: an open system volcano. Chikyu Mon 23:545–550 (in Japanese)
Google Scholar
Sudo Y, Kong L (2001) Three-dimensional seismic velocity structure beneath Aso volcano Kyushu, Japan. Bull Volcanol 63:326–344
Article
Google Scholar
Sudo Y, Tsutsui T, Nakaboh M, Yoshikawa M, Yoshikawa S, Inoue H (2006) Ground deformation and magma reservoir at Aso volcano: location of deflation source derived from long-term geodetic surveys. Kazan 51(5):291–309 (in Japanese)
Google Scholar
Takayama H, Yoshida A (2007) Crustal deformation in Kyushu derived from GEONET data. J Geophys Res 112(B6):B06413
Article
Google Scholar
Terada A, Hashimoto T (2017) Variety and sustainability of volcanic lakes: Response to subaqueous thermal activity predicted by a numerical model. J Geophys Res Solid Earth 122:6108–6130. https://doi.org/10.1002/2017jb014387
Article
Google Scholar
Trunk L, Bernard A (2008) Investigating crater lake warming using ASTER thermal imagery: case studies at Ruapehu, Poa´s, KawahIjen, and Copahue´ Volcanoes. J Volcanol Geotherm Res 178:259–270
Article
Google Scholar
Tsutsui T, Sudo Y (2004) Seismic reflectors beneath the central cones of Aso Volcano, Kyushu, Japan. J Volcanol Geotherm Res 131:33–58
Article
Google Scholar
Unglert K, SavageMK Fournier N, Ohkura T, Abe Y (2011) Shear wave splitting, vP/vS, and GPS during a time of enhanced activity at Aso caldera, Kyushu. J Geophys Res 116:B11203. https://doi.org/10.1029/2011JB008520
Article
Google Scholar
Valade S, Lacanna G, Coppola D, Laiolo M, Pistolesi M, Delle Donne D, Genco R, Marchetti E, Ulivieri G, Allocca C, Cigolini C, Nishimura T, Poggi P, Ripepe M (2016) Tracking dynamics of magma migration in open-conduit systems. Bull Volcanol 78(11):78–90. https://doi.org/10.1007/s00445-016-1072-x
Article
Google Scholar
Wooster MJ, Zhukov B, Oertel D (2003) Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sens Environ 86:83–107
Article
Google Scholar
Wright R, Flynn L, Garbeil H, Harris A, Pilger E (2002) Automated volcanic eruption detection using MODIS. Remote Sens Environ 82(1):135–155
Article
Google Scholar
Yagi Y, Okuwaki R, Enescu B, Kasahara A, Miyakawa A, Otsubo M (2016) Rupture process of the 2016 Kumamoto earthquake in relation with the thermal structure around Aso volcano. Earth Planets Space 68(1):1–6. https://doi.org/10.1186/s40623-016-0492-3
Article
Google Scholar
Yamamoto M, Kawakatsu H, Kaneshima S, Mori T, Tsutsui T, Sudo Y, Morita Y (1999) Detection of a crack-like conduit beneath the active craterat Aso volcano, Japan. Geophys Res Lett 26:3677–3680. https://doi.org/10.1029/1999GL005395
Article
Google Scholar
Yokoo A, Taniguchi H (2004) Application of video image processing to detect volcanic pressure waves: a case study on archived images of Aso Volcano, Japan. Geophys Res Lett 31:L23604. https://doi.org/10.1029/2004GL021183
Article
Google Scholar