Abe Y, Ohkura T, Shibutani T, Hirahara K, Kato M (2010) Crustal structure beneath Aso caldera, Southwest Japan, as derived from receiver function analysis. J Volcanol Geotherm Res 195:1–12. https://doi.org/10.1016/j.jvolgeores.2010.05.011
Article
Google Scholar
Abe Y, Ohkura T, Shibutani T, Hirahara K, Yoshikawa S, Inoue H (2017) Low-velocity zones in the crust beneath Aso caldera, Kyushu, Japan, derived from receiver function analyses. J Geophys Res 122(3):2013–2033. https://doi.org/10.1002/2016JB013686
Article
Google Scholar
Bensen GD, Ritzwoller MH, Shapiro NM (2008) Broadband ambient noise surface wave tomography across the United States. J Geophys Res 113(B5):B05306. https://doi.org/10.1029/2007JB005248
Article
Google Scholar
Brenguier F, Shapiro NM, Campillo M, Nercessian A, Ferrazzini V (2007) 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations. Geophys Res Lett 34(2):L02305. https://doi.org/10.1029/2006GL028586
Article
Google Scholar
Cupillard P, Capdeville Y (2010) On the amplitude of surface waves obtained by noise correlation and the capability to recover the attenuation: a numerical approach. Geophys J Int 181(3):1687–1700. https://doi.org/10.1111/j.1365-246X.2010.04586.x
Article
Google Scholar
Cupillard P, Stehly L, Romanowicz B (2011) The one-bit noise correlation: a theory based on the concepts of coherent and incoherent noise. Geophys J Int 184(3):1397–1414. https://doi.org/10.1111/j.1365-246X.2010.04923.x
Article
Google Scholar
De Plaen RSM, Lecocq T, Caudron C, Ferrazzini V, Francis O (2016) Single-station monitoring of volcanoes using seismic ambient noise. Geophys Res Lett 43(16):8511–8518. https://doi.org/10.1002/2016GL070078
Article
Google Scholar
Escudero CR, Bandy WL (2017) Ambient seismic noise tomography of the Colima Volcano Complex. Bull Volcanol 79(2):13. https://doi.org/10.1007/s00445-016-1096-2
Article
Google Scholar
Fujii J, Nakajima T, Kamata H (2001) Paleomagnetic directions of the Aso pyroclastic-flow and the Aso-4 co-ignimbrite ash-fall deposits in Japan. Earth Planets Space 53:1137–1150. https://doi.org/10.1186/BF03352409
Article
Google Scholar
Goldstein P, Dodge D, Firpo M, Minner L (2003) SAC2000: signal processing and analysis tools for seismologists and engineers. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) Invited contribution to the IASPEI international handbook of earthquake and engineering seismology. Academic Press, London
Google Scholar
Goutorbe B, de Oliveira Coelho DL, Drouet S (2015) Rayleigh wave group velocities at periods of 6–23 s across Brazil from ambient noise tomography. Geophys J Int 203(2):869–882. https://doi.org/10.1093/gji/ggv343
Article
Google Scholar
Hata M, Takakura S, Matsushima N, Hashimoto T, Utsugi M (2016) Crustal magma pathway beneath Aso caldera inferred from three-dimensional electrical resistivity structure. Geophys Res Lett 43:10720–10727. https://doi.org/10.1002/2016GL070315
Article
Google Scholar
Herrmann RB (1987) Computer programs in seismology, user’s manual, IV. St. Louis University, St. Louis
Google Scholar
Herrmann RB (2013) Computer programs in seismology: an evolving tool for instruction and research. Seismol Res Lett 84(6):1081–1088. https://doi.org/10.1785/0220110096
Article
Google Scholar
Huang Y-C, Yao H, Huang B-S, van der Hilst RD, Wen K-L, Huang W-G, Chen C-H (2010) Phase velocity variation at periods 0.5–3 seconds in the Taipei Basin of Taiwan from correlation of ambient seismic noise. Bull Seismol Soc Am 100(5A):2250–2263. https://doi.org/10.1785/0120090319
Article
Google Scholar
Huang Y-C, Yao H, Wu FT, Liang W-T, Huang B-S, Lin C-H, Wen K-L (2014) Crustal and upper mantle S-wave velocity structures across the Taiwan Strait from ambient seismic noise and teleseismic Rayleigh wave analyses. J Asian Earth Sci 81:38–52. https://doi.org/10.1016/j.jseaes.2013.11.023
Article
Google Scholar
Huang Y-C, Lin C-H, Kagiyama T (2017) Shallow crustal velocities and volcanism suggested from ambient noise studies using a dense broadband seismic network in the Tatun Volcano Group of Taiwan. J Volcanol Geotherm Res 341:6–20. https://doi.org/10.1016/j.jvolgeores.2017.05.016
Article
Google Scholar
Ikebe S, Watanabe K, Miyabuchi Y (2008) The sequence and style of the 1988–1995 eruptions of Nakadake Aso volcano, Kyushu, Japan. Bull Volcanol Soc Japan 53(1):15–33. https://doi.org/10.18940/kazan.53.1_15 (in Japanese with English abstract)
Article
Google Scholar
Ishii K, Hayashi Y, Shimbori T (2018) Using Himawari-8, estimation of SO2 cloud altitude at Aso volcano eruption, on October 8, 2016. Earth Planets Space 70:19. https://doi.org/10.1186/s40623-018-0793-9
Article
Google Scholar
Japan Meteorological Agency (2013) National catalogue of the active volcanoes in Japan (the fourth edition, English version). Japan Meteorological Agency, Tokyo. http://www.data.jma.go.jp/svd/vois/data/tokyo/STOCK/souran_eng/menu.htm. Accessed 26 July 2017
Kagiyama T, Yoshikawa S, Utsugi M (2016) Conductivity distribution of the surface layer around Aso caldera. Ann Disas Prev Res Inst, Kyoto Univ 59B:84–91 (in Japanese with English abstract)
Google Scholar
Kamata H, Kodama K (1999) Volcanic history and tectonics of the Southwest Japan Arc. Island Arc 8:393–403. https://doi.org/10.1046/j.1440-1738.1999.00241.x
Article
Google Scholar
Kanamori H, Anderson DL (1977) Importance of physical dispersion in surface wave and free oscillation problems: review. Rev Geophys 15(1):105–112. https://doi.org/10.1029/RG015i001p00105
Article
Google Scholar
Kanda W, Tanaka Y, Utsugi M, Takakura S, Hashimoto T, Inoue H (2008) A preparation zone for volcanic explosions beneath Naka-dake crater, Aso volcano, as inferred from magnetotelluric surveys. J Volcanol Geotherm Res 178:32–45. https://doi.org/10.1016/j.jvolgeores.2008.01.022
Article
Google Scholar
Kaneshima S, Kawakatsu H, Matsubayashi H, Sudo Y, Tsutsui T, Ohminato T, Ito H, Uhira K, Yamasato H, Oikawa J, Takeo M, Iidaka T (1996) Mechanism of phreatic eruptions at Aso volcano inferred from near-field broadband seismic observations. Science 273:642–645. https://doi.org/10.1126/science.273.5275.642
Article
Google Scholar
Kao H, Behr Y, Currie CA, Hyndman R, Townend J, Lin F-C, Ritzwoller MH, Shan SJ, He J (2013) Ambient seismic noise tomography of Canada and adjacent regions: part I. Crustal structures. J Geophys Res 118(11):5865–5887. https://doi.org/10.1002/2013JB010535
Article
Google Scholar
Kawakatsu H, Ohminato T, Ito H (1994) 10 s-period volcanic tremors observed over a wide area in southwestern Japan. Geophys Res Lett 21(18):1963–1966. https://doi.org/10.1029/94GL01683
Article
Google Scholar
Kawakatsu H, Kaneshima S, Matsubayashi H, Ohminato T, Sudo Y, Tsutsui T, Uhira K, Yamasato H, Ito H, Legrand D (2000) Aso94: Aso seismic observation with broadband instruments. J Volcanol Geotherm Res 101:129–154. https://doi.org/10.1016/S0377-0273(00)00166-9
Article
Google Scholar
Komazawa M (1995) Gravimetric analysis of Aso volcano and its interpretation. J Geodetic Soc Jpn 41(1):17–45. https://doi.org/10.11366/sokuchi1954.41.17
Article
Google Scholar
Kusumoto S (2016) Dip distribution of Oita–Kumamoto Tectonic Line located in central Kyushu, Japan, estimated by eigenvectors of gravity gradient tensor. Earth Planets Space 68:153. https://doi.org/10.1186/s40623-016-0529-7
Article
Google Scholar
Larose E, Derode A, Campillo M, Fink M (2004) Imaging from one-bit correlations of wideband diffuse wave fields. J Appl Phys 95(12):8393–8399. https://doi.org/10.1063/1.1739529
Article
Google Scholar
Legrand D, Kaneshima S, Kawakatsu H (2000) Moment tensor analysis of near-field broadband waveforms observed at Aso Volcano, Japan. J Volcanol Geotherm Res 101:155–169. https://doi.org/10.1016/S0377-0273(00)00167-0
Article
Google Scholar
Lin F-C, Ritzwoller MH, Townend J, Bannister S, Savage MK (2007) Ambient noise Rayleigh wave tomography of New Zealand. Geophys J Int 170(2):649–666. https://doi.org/10.1111/j.1365-246X.2007.03414.x
Article
Google Scholar
Lin F-C, Moschetti MP, Ritzwoller MH (2008) Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys J Int 173(1):281–298. https://doi.org/10.1111/j.1365-246X.2008.03720.x
Article
Google Scholar
Ma Y, Clayton RW, Tsai VC, Zhan Z (2013) Locating a scatterer in the active volcanic area of Southern Peru from ambient noise cross-correlation. Geophys J Int 192(3):1332–1341. https://doi.org/10.1093/gji/ggs103
Article
Google Scholar
Machida H, Arai F (1983) Extensive ash falls in and around the Sea of Japan from large late quaternary eruptions. J Volcanol Geotherm Res 18(1):151–164. https://doi.org/10.1016/0377-0273(83)90007-0
Article
Google Scholar
Miyabuchi Y (2009) A 90,000-year tephrostratigraphic framework of Aso Volcano, Japan. Sediment Geol 220(3–4):169–189. https://doi.org/10.1016/j.sedgeo.2009.04.018
Article
Google Scholar
Miyabuchi Y (2011) Post-caldera explosive activity inferred from improved 67–30 ka tephrostratigraphy at Aso Volcano, Japan. J Volcanol Geotherm Res 205(3–4):94–113. https://doi.org/10.1016/j.jvolgeores.2011.05.004
Article
Google Scholar
Miyabuchi Y, Hoshizumi H, Takada H, Watanabe K, Xu S (2003) Pumice-fall deposits from Aso volcano during the past 90,000 years, southwestern Japan. Bull Volcanol Soc Japan 48(2):195–214. https://doi.org/10.18940/kazan.48.2_195 (in Japanese with English abstract)
Article
Google Scholar
Miyabuchi Y, Iizuka Y, Hara C, Yokoo A, Ohkura T (2018) The September 14, 2015 phreatomagmatic eruption of Nakadake first crater, Aso Volcano, Japan: eruption sequence inferred from ballistic, pyroclastic density current and fallout deposits. J Volcanol Geotherm Res 351:41–56. https://doi.org/10.1016/j.jvolgeores.2017.12.009
Article
Google Scholar
Nagaoka Y, Nishida K, Aoki Y, Takeo M, Ohminato T (2012) Seismic imaging of magma chamber beneath an active volcano. Earth Planet Sci Lett 333–334:1–8. https://doi.org/10.1016/j.epsl.2012.03.034
Article
Google Scholar
Nishida K, Montagner JP, Kawakatsu H (2009) Global surface wave tomography using seismic hum. Science 326(5942):112. https://doi.org/10.1126/science.1176389
Article
Google Scholar
Nobile A, Acocella V, Ruch J, Aoki Y, Borgstrom S, Siniscalchi V, Geshi N (2017) Steady subsidence of a repeatedly erupting caldera through InSAR observations: Aso, Japan. Bull Volcanol 79(5):32. https://doi.org/10.1007/s00445-017-1112-1
Article
Google Scholar
Ono K, Watanabe K (1985) Geological map of Aso Volcano 1:50,000. In: Geological map of volcanoes, no. 4. Geological Survey of Japan. (in Japanese with English abstract)
Red Relief Image Map (2018) Asia Air Survey Co., Ltd., Tokyo. https://www.rrim.jp/. Accessed 30 Mar 2018
Roux P, Sabra KG, Kuperman WA, Roux A (2005) Ambient noise cross correlation in free space: theoretical approach. J Acoust Soc Am 117(1):79–84
Article
Google Scholar
Sabra KG, Gerstoft P, Roux P, Kuperman WA, Fehler MC (2005a) Extracting time-domain Green’s function estimates from ambient seismic noise. Geophys Res Lett 32(3):L03310. https://doi.org/10.1029/2004GL021862
Article
Google Scholar
Sabra KG, Gerstoft P, Roux P, Kuperman WA, Fehler MC (2005b) Surface wave tomography from microseisms in Southern California. Geophys Res Lett 32(14):L14311. https://doi.org/10.1029/2005GL023155
Article
Google Scholar
Sabra KG, Roux P, Gerstoft P, Kuperman WA, Fehler MC (2006) Extracting coherent coda arrivals from cross-correlations of long period seismic waves during the Mount St. Helens 2004 eruption. Geophys Res Lett 33(6):L06313. https://doi.org/10.1029/2005GL025563
Article
Google Scholar
SAC Manual (2017) Incorporated research institutions for seismology, Washington, DC. http://ds.iris.edu/files/sac-manual/. Accessed 20 Sept 2017
Saygin E, Kennett BLN (2010) Ambient seismic noise tomography of Australian continent. Tectonophysics 481(1–4):116–125. https://doi.org/10.1016/j.tecto.2008.11.013
Article
Google Scholar
Sens-Schönfelder C (2008) Synchronizing seismic networks with ambient noise. Geophys J Int 174(3):966–970. https://doi.org/10.1111/j.1365-246X.2008.03842.x
Article
Google Scholar
Sens-Schönfelder C, Wegler U (2006) Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophys Res Lett 33(21):L21302. https://doi.org/10.1029/2006GL027797
Article
Google Scholar
Shapiro NM, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett 31(7):L07614. https://doi.org/10.1029/2004GL019491
Article
Google Scholar
Shapiro NM, Campillo M, Stehly L, Ritzwoller MH (2005) High-resolution surface-wave tomography from ambient seismic noise. Science 307:1615–1618. https://doi.org/10.1126/science.1108339
Article
Google Scholar
Sofyan Y, Nishijima J, Fujimitsu Y, Yoshikawa S, Kagiyama T, Ohkura T (2016) The oscillation model of hydrothermal dynamics beneath Aso volcano, southwest Japan after small eruption on May 2011: a new understanding model using repeated absolute and relative gravity measurement. J Volcanol Geotherm Res 310:172–185. https://doi.org/10.1016/j.jvolgeores.2015.12.012
Article
Google Scholar
Stehly L, Campillo M, Shapiro NM (2006) A study of the seismic noise from its long-range correlation properties. J Geophys Res 111(B10):B10306. https://doi.org/10.1029/2005JB004237
Article
Google Scholar
Stehly L, Campillo M, Shapiro NM (2007) Traveltime measurements from noise correlation: stability and detection of instrumental time-shifts. Geophys J Int 171(1):223–230. https://doi.org/10.1111/j.1365-246X.2007.03492.x
Article
Google Scholar
Sudo Y (1991) An attenuating structure beneath the Aso caldera determined from the propagation of seismic waves. Bull Volcanol 53:99–111. https://doi.org/10.1007/BF00265415
Article
Google Scholar
Sudo Y (2001) The character of volcanic activity at Aso volcano: an open system volcano. Chikyu Mon 23:545–550 (in Japanese)
Google Scholar
Sudo Y, Kong LSL (2001) Three-dimensional seismic velocity structure beneath Aso volcano, Kyushu, Japan. Bull Volcanol 63:326–344. https://doi.org/10.1007/s004450100145
Article
Google Scholar
Tamura J, Okada T (2016) Ambient noise tomography in the Naruko/Onikobe volcanic area, NE Japan: implications for geofluids and seismic activity. Earth Planets Space 68:5. https://doi.org/10.1186/s40623-016-0380-x
Article
Google Scholar
Tsutsui T, Sudo Y (2004) Seismic reflectors beneath the central cones of Aso Volcano, Kyushu, Japan. J Volcanol Geotherm Res 131(1–2):33–58. https://doi.org/10.1016/S0377-0273(03)00315-9
Article
Google Scholar
Tsutsui T, Sudo Y, Mori T, Katsumata K, Tanaka S, Oikawa J, Tomatsu T, Matsuwo N, Matsushima T, Miyamachi H, Nishi K, Fujiwara Y, Hiramatsu H (2003) 3-D seismic velocity structure beneath the edifice of central cones of Aso Volcano. Bull Volcanol Soc Japan 48(3):293–307. https://doi.org/10.18940/kazan.48.3_293 (in Japanese with English abstract)
Article
Google Scholar
Weaver RL (2005) Information from seismic noise. Science 307:1568–1569. https://doi.org/10.1126/science.1109834
Article
Google Scholar
Wessel P, Smith WHF (1998) New, improved version of the generic mapping tools released. EOS Trans AGU 79:579
Article
Google Scholar
WIN system (2017) Earthquake research institute, the University of Tokyo, Tokyo. (in Japanese). http://eoc.eri.u-tokyo.ac.jp/WIN/. Accessed 19 Sept 2017
Yamamoto M, Kawakatsu H, Kaneshima S, Mori T, Tsutsui T, Sudo Y, Morita Y (1999) Detection of a crack-like conduit beneath the active crater at Aso volcano Japan. Geophys Res Lett 26(24):3677–3680. https://doi.org/10.1029/1999GL005395
Article
Google Scholar
Yang Y, Ritzwoller MH, Levshin AL, Shapiro NM (2007) Ambient noise Rayleigh wave tomography across Europe. Geophys J Int 168(1):259–274. https://doi.org/10.1111/j.1365-246X.2006.03203.x
Article
Google Scholar
Yao H, Campman X, de Hoop MV, van der Hilst RD (2009) Estimation of surface wave Green’s functions from correlation of direct waves, coda waves, and ambient noise in SE Tibet. Phys Earth Planet Inter 177(1–2):1–11. https://doi.org/10.1016/j.pepi.2009.07.002
Article
Google Scholar
Yao H, van der Hilst RD, de Hoop MV (2006) Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I. Phase velocity maps. Geophys J Int 166(2):732–744. https://doi.org/10.1111/j.1365-246X.2006.03028.x
Article
Google Scholar
Zheng S, Sun X, Song X, Yang Y, Ritzwoller MH (2008) Surface wave tomography of China from ambient seismic noise correlation. Geochem Geophys Geosyst 9(5):Q05020. https://doi.org/10.1029/2008GC001981
Article
Google Scholar