Arason P, Petersen GN, Bjornsson H (2011) Observations of the altitude of the volcanic plume during the eruption of Eyjafjallajökull, April–May 2010. Earth Syst Sci Data 3:9–17. https://doi.org/10.5194/essd-3-9-2011
Article
Google Scholar
Barberi F, Bertagnini A, Landi P, Principe C (1992) A review on phreatic eruptions and their precursors. J Volcanol Geotherm Res 52:231–246. https://doi.org/10.1016/0377-0273(92)90046-G
Article
Google Scholar
Behncke B, Falsaperla S, Pecora E (2009) Complex magma dynamics at Mount Etna revealed by seismic, thermal, and volcanological data. J Geophys Res 114:B03211. https://doi.org/10.1029/2008JB005882
Article
Google Scholar
Bursik M (2001) Effect of wind on the rise height of volcanic plumes. Geophys Res Lett 28:3621–3624. https://doi.org/10.1029/2001GL013393
Article
Google Scholar
Campion R (2014) New lava lake at Nyamuragira volcano revealed by combined ASTER and OMI SO2 measurements. Geophys Res Lett 41:7485–7492. https://doi.org/10.1002/2014GL061808
Article
Google Scholar
Carn SA, Krueger AJ, Arellano SR, Krotkov NA, Yang K (2008) Daily monitoring of Ecuadorian volcanic degassing from space. J Volcanol Geotherm Res 176:141–150. https://doi.org/10.1016/j.jvolgeores.2008.01.029
Article
Google Scholar
de Moor JM, Aiuppa A, Pacheco J, Avard G, Kern C, Liuzzo M, Martínez M, Giudice G, Fischer TP (2015) Short-period volcanic gas precursors to phreatic eruptions: insights from Poás Volcano, Costa Rica. Earth Planet Sci Lett 442:218–227. https://doi.org/10.1016/j.epsl.2016.02.056
Article
Google Scholar
Flynn L, Long C, Wu X, Evans R, Beck CT, Petropavlovskikh I, McConville G, Yu W, Zhang Z, Niu J, Beach E, Hao Y, Pan C, Sen B, Novicki M, Zhou S, Seftor C (2014) Performance of the Ozone Mapping and Profiler Suite (OMPS) products. J Geophys Res Atmos 119:6181–6195. https://doi.org/10.1002/2013JD020467
Article
Google Scholar
Fukui K (1995) H2O and heat discharged from Aso volcano in noneruptive stage. Bull Volcanol Soc Jpn 40:233–248. https://doi.org/10.18940/kazan.40.4_233 (in Japanese with English abstract)
Article
Google Scholar
Fukui K, Terada A (2013) Heat and H2O discharge rate at the Shinmoedake volcano in February 2011. Q J Seis (Kenshin Jiho) 77:223–228 (in Japanese with English abstract)
Google Scholar
Galle B, Oppenheimer C, Geyer A, McGonigle AJS, Edmonds M, Horrocks L (2002) A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance. J Volcanol Geotherm Res 119:241–254. https://doi.org/10.1016/S0377-0273(02)00356-6
Article
Google Scholar
Iguchi M, Yakiwara H, Tameguri T, Hendrasto M, Hirabayashi J (2008) Mechanism of explosive eruption revealed by geophysical observations at the Sakurajima, Suwanosejima and Semeru volcanoes. J Volcanol Geotherm Res 178:1–9. https://doi.org/10.1016/j.jvolgeores.2007.10.010
Article
Google Scholar
Ishii K, Hayashi Y, Shimbori T (2018) Using Himawari-8, estimation of SO2 cloud altitude at Aso volcano eruption, on October 8, 2016. Earth Planets Space 70:19. https://doi.org/10.1186/s40623-018-0793-9
Article
Google Scholar
Japan Meteorological Agency (JMA) (2017) Annual report on volcanic activities of Aso volcano in 2016. http://www.data.jma.go.jp/svd/vois/data/tokyo/STOCK/monthly_v-act_doc/fukuoka/2016y/503_16y.pdf. Accessed 13 Jan 2019
Krueger AJ (1983) Sighting of El Chichón sulfur dioxide clouds with the Nimbus 7 total ozone mapping spectrometer. Science 220:1377–1379. https://doi.org/10.1126/science.220.4604.1377
Article
Google Scholar
Li C, Joiner J, Krotkov NA, Bhartia PK (2013) A fast and sensitive new satellite SO2 retrieval algorithm based on principal component analysis: application to the ozone monitoring instrument. Geophys Res Lett 40:6314–6318. https://doi.org/10.1002/2013GL058134
Article
Google Scholar
Li C, Krotkov NA, Carn S, Zhang Y, Spurr RJD, Joiner J (2017) New-generation NASA Aura Ozone Monitoring Instrument (OMI) volcanic SO2 dataset: algorithm description, initial results, and continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS). Atmos Meas Tech 10:445–458. https://doi.org/10.5194/amt-10-445-2017
Article
Google Scholar
Matsushima N, Shinohara H (2006) Visible and invisible volcanic plumes. Geophys Res Lett 33:L24309. https://doi.org/10.1029/2006GL026506
Article
Google Scholar
Miyabuchi Y, Terada A (2009) Subaqueous geothermal activity revealed by lacustrine sediments of the acidic Nakadake crater lake, Aso Volcano, Japan. J Volcanol Geotherm Res 187:140–145. https://doi.org/10.1016/j.jvolgeores.2009.08.001
Article
Google Scholar
Miyabuchi Y, Maeno F, Nakada S, Nagai M, Iizuka Y, Hoshizumi H, Tanaka A, Itoh J, Kawanabe Y, Oishi M, Yokoo A, Ohkura T (2017) The October 7–8, 2016 eruptions of Nakadake crater, Aso Volcano, Japan and their deposits. Paper presented at Japan geoscience union-American geophysical union joint meeting. Chiba, Japan, SVC47-11, 22 May 2017. (in Japanese with English abstract)
Miyabuchi Y, Iizuka Y, Hara C, Yokoo A, Ohkura T (2018) The September 14, 2015 phreatomagmatic eruption of Nakadake first crater, Aso Volcano, Japan: eruption sequence inferred from ballistic, pyroclastic density current and fallout deposits. J Volcanol Geotherm Res 351:41–56. https://doi.org/10.1016/j.jvolgeores.2017.12.009
Article
Google Scholar
Morton BR, Taylor G, Turner JS (1956) Turbulent gravitational convection from maintained and instantaneous sources. Proc R Soc A 234:1–23. https://doi.org/10.1098/rspa.1956.0011
Article
Google Scholar
Ohsawa S, Saito T, Yoshikawa S, Mawatari H, Yamada M, Amita K, Takamatsu N, Sudo Y, Kagiyama T (2010) Color change of lake water at the active crater lake of Aso volcano, Yudamari, Japan: is it in response to change in water quality induced by volcanic activity? Limnology 11:207–215. https://doi.org/10.1007/s10201-009-0304-6
Article
Google Scholar
Ono K, Watanabe K (1985) Geological map of Aso volcano 1:50,000. Geological Survey of Japan. https://gbank.gsj.jp/volcano/Act_Vol/aso/index-e.html. Accessed 13 Jan 2019
Rouwet D, Sandri L, Marzocchi W, Gottsmann J, Selva J, Tonini R, Papale P (2014) Recognizing and tracking volcanic hazards related to non-magmatic unrest: a review. J Appl Volcanol 3:17. https://doi.org/10.1186/s13617-014-0017-3
Article
Google Scholar
Saito G, Ishizuka O, Ishizuka Y, Hoshizumi H, Miyagi I (2018) Petrological characteristics and volatile content of magma of the 1979, 1989, and 2014 eruptions of Nakadake, Aso volcano, Japan. Earth Planets Space 70:197. https://doi.org/10.1186/s40623-018-0970-x
Article
Google Scholar
Sano Y, Kagoshima T, Takahata N, Nishio Y, Roulleau E, Pinti DL, Fischer TP (2015) Ten-year helium anomaly prior to the 2014 Mt Ontake eruption. Sci Rep 5:13069. https://doi.org/10.1038/srep13069
Article
Google Scholar
Seftor CJ, Jaross G, Kowitt M, Haken M, Li J, Flynn LE (2014) Postlaunch performance of the Suomi national polar-orbiting partnership ozone mapping and profiler suite (OMPS) nadir sensors. J Geophys Res Atmos 119:4413–4428. https://doi.org/10.1002/2013JD020472
Article
Google Scholar
Shimbori T, Fukui K (2013) Eruption column height and magma discharge rate as inferred from camera images—the eruption of the Shinmoedake Volcano on March 13, 2011. Q J Seis (Kenshin Jiho) 77:119–138 (in Japanese)
Google Scholar
Shinohara H, Yoshikawa S, Miyabuchi Y (2015) Degassing activity of a volcanic crater lake: Volcanic plume measurements at the Yudamari crater lake, Aso Volcano, Japan. In: Rouwet D, Christenson B, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes. Springer, Berlin, pp 201–217. https://doi.org/10.1007/978-3-642-36833-2
Chapter
Google Scholar
Stoiber RE, Maliconico LL, Williams SN (1983) Use of the correlation spectrometer at volcanoes. In: Tazieff H, Sabroux JC (eds) Forecasting volcanic events. Elsevier, Amsterdam, pp 425–444
Google Scholar
Terada A, Hashimoto T (2017) Variety and sustainability of volcanic lakes: response to subaqueous thermal activity predicted by a numerical model. J Geophys Res Solid Earth 122:6108–6130. https://doi.org/10.1002/2017JB014387
Article
Google Scholar
Terada A, Ida Y, Ohminato T (2003) Automatic image recording system using the Windows PCs: application to the eruption columns of Miyakejima volcano, Japan. Bull Volcanol Soc Jpn 48:445–459. https://doi.org/10.18940/kazan.48.6_445 (in Japanese with English abstract)
Article
Google Scholar
Terada A, Ida Y, Iijima S, Yoshimoto M, Shimano T (2005) The kinematic features of volcanic clouds: a series of small eruptions from 15 to 18, September 2004, at Asama volcano, Japan. Bull Volcanol Soc Jpn 50:555–565. https://doi.org/10.18940/kazan.50.6_555 (in Japanese with English abstract)
Article
Google Scholar
Terada A, Hashimoto T, Kagiyama T (2012) A water flow model of the active crater lake at Aso volcano, Japan: fluctuations of magmatic gas and groundwater fluxes from the underlying hydrothermal system. Bull Volcanol 74:641–655. https://doi.org/10.1007/s00445-011-0550-4
Article
Google Scholar
Theys N, De Smedt I, Yu H, Danckaert T, van Gent J, Hörmann C, Wagner T, Hedelt P, Bauer H, Romahn F, Pedergnana M, Loyola D, Van Roozendael M (2017) Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: algorithm theoretical basis. Atmos Meas Tech 10:119–153. https://doi.org/10.5194/amt-10-119-2017
Article
Google Scholar
Volcanological Division, Seismological and Volcanological Department JMA (2014) Installation of new volcano monitoring systems for 47 volcanoes in Japan. Q J Seis (Kenshin Jiho) 77:241–310 (in Japanese with English abstract)
Google Scholar