Aitken MJ (1985) Thermoluminescence dating. Academic Press, London, p 359
Google Scholar
Ali M, Oda H, Hayashida A, Takemura K, Torii M (1999) Holocene paleomagnetic secular variation at Lake Biwa, central Japan. Geophys J Int 136:218–228
Article
Google Scholar
Alva-Valdivia LM, Rodríguez-Trejob A, Moralesc J, González-Rangela JA, Agarwal A (2019) Paleomagnetism and age constraints of historical lava flows from the El Jorullo volcano, Michoacán, Mexico. J S Am Earth Sci 93:439–448
Article
Google Scholar
Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360
Article
Google Scholar
Cai S, Tauxe L, Deng C, Pan Y, Jin G, Zheng J, Xie F, Qin H, Zhu R (2014) Geomagnetic intensity variations for the past 8 kyr: new archaeointensity results from eastern China. Earth Planet Sci Lett 392:217–229
Article
Google Scholar
Cai S, Chen W, Tauxe L, Deng C, Qin H, Pan Y, Zhu R (2015) New constraints on the variation of the geomagnetic field during the late Neolithic period: archaeointensity results from Sichuan, southwestern China. J Geophys Res 120:2056–2069
Article
Google Scholar
Cai S, Jin G, Tauxe L, Deng C, Qin H, Pan Y, Zhu R (2017) Archaeointensity results spanning the past 6 kiloyears from eastern China and implications for extreme behaviors of the geomagnetic field. Proc Natl Acad Sci 114:39–44
Article
Google Scholar
Coe RS (1967) Paleo-intensities of the Earth’s magnetic field determined from tertiary and quaternary rocks. J Geophys Res 72:3247–3262
Article
Google Scholar
Fisher R (1953) Dispersion on a sphere. Proc R Soc Lond 217(Series A):295–305
Article
Google Scholar
Guérin G, Mercier N, Adamiec G (2011) Dose-rate conversion factors: update. Anc TL 29:5–8
Google Scholar
Hatakeyama T, Shibuya H (2012) Geomagnetic secular variation in Japan from archeomagnetic data. In: Japan geoscience union meeting 2012 Abstract, STT58-01
Hayakawa Y (1995) Characteristics of Japanese loam, and its Eolian origin. Bull Volcanol Soc Japan 40:177–190 (in Japanese with English abstract)
Google Scholar
Hong H, Yu Y, Lee CH, Kim RH, Park J, Doh SJ, Kim W, Sung H (2013) Globally strong geomagnetic field intensity circa 3000 years ago. Earth Planet Sci Lett 383:142–152
Article
Google Scholar
Kawachi S (1974) Geology of the Tateshinayama district, with Geological sheet map at 1:50,000. Geol Surv Japan, Tokyo, pp 119 (in Japanese with English abstract)
Kawachi S, Nakaya S, Muraki K (1978) YPm-IV pumice bed in Northern Yatsugatake, Yatsugatake Volcanic Chain, central Japan—studies on Yatsugatake tephra Part I. Bull Geol Surv Japan 29:21–33
Google Scholar
Kharfi F, Boudraa L, Benabdelghani I, Bououden M (2019) TL dating and XRF clay provenance analysis of ancient brick at Cuicul Roman city, Algeria. J Radioanal Nucl Chem 320:395–403
Article
Google Scholar
Kirschvink JL (1980) The least-square line and plane and the analysis of paleomagnetic data. Geophys J R Astron Soc 62:699–718
Article
Google Scholar
Kondopoulou D, Aidona E, Ioannidis N, Polymeris GS, Tsolakis S (2015) Archaeomagnetic study and thermoluminescence dating of Protobyzantine kilns (Megali Kypsa, North Greece). J Archaeol Sci Rep 2:156–168
Google Scholar
Leonhardt R, Heunemann C, Krása D (2004) Analyzing absolute paleointensity determinations: acceptance criteria and the software ThellierTool4.0. Geochem Geophys Geosyst 12:Q12016
Google Scholar
May V, Chivas A, Dosseto A, Honda M, Matchan E, Phillips D, Price D (2018) Quaternary volcanic evolution in the continental backarc of southern Mendoza, Argentina. J S Am Earth Sci 84:88–103
Article
Google Scholar
McFadden PL (1982) Rejection of palaeomagnetic observations. Earth Planet Sci Lett 61:392–395
Article
Google Scholar
Nagata T, Arai T, Momose K (1963) Secular variation of the geomagnetic total force during the last 5000 years. J Geophys Res 68:5277–5281
Article
Google Scholar
Nakamura M (1991) A petrologic model for the younger period of Northern Yatsugatake Volcanoes, Central Japan. Bull Volcanol Soc Jpn 36:93–112 (in Japanese with English abstract)
Google Scholar
Nishiki K, Matsumoto A, Uto K, Takahashi K, Miyake Y (2007) Reexamination of volcanic activity of Yatsugatake area, central Japan. J Geol Soc Japan 113:193–211 (in Japanese with English abstract)
Article
Google Scholar
Nishiki K, Takahashi K, Matsumoto A, Miyake Y (2011) Quaternary volcanism and tectonic history of the Suwa-Yatsugatake Volcanic Province, Central Japan. J Volcanol Geotherm Res 203:158–167
Article
Google Scholar
Oba T, Kawachi S (1997) The eruption stage of YPm-IV pumice in Mt. Yokodake, northern Yatsugatake volcanic group, estimated by petrochemistry and mineralogy. In: Japan earth planet sci joint meeting 1997 abstract, G31-06 (in Japanese)
Ogawa Y, Aoyama H, Yamamoto M, Tsutsui T, Terada A, Ohkura T, Kanda W, Koyama T, Kaneko T, Ohminato T, Ishizaki Y, Yoshimoto M, Ishimine Y, Nogami K, Mori T, Kikawada Y, Kataoka KS, Matsumoto T, Kamiishi I, Yamaguchi S, Ito Y, Tsunematsu K (2018) Comprehensive Survey of 2018 Kusatsu–Shirane Eruption. In: Proc symp on the natural disaster sciences, vol 55, pp 25–30 (in Japanese)
Oishi M (2015) 14C dating of the Yt-Pm4 tephra, the youngest pumice fall from the Yatsugatake Volcano, Japan. Bull Volcanol Soc Jpn 60:477–481 (in Japanese with English abstract)
Google Scholar
Oishi M, Suzuki T (2004) Tephrostratigraphy and eruptive history of the younger tephra beds from the Yatsugatake Volcano, central Japan. Bull Volcanol Soc Jpn 49:1–12 (in Japanese with English abstract)
Google Scholar
Okuno M (1995) Eruption age inferred from radiocarbon accelerator (AMS) dating of paleosol. In: Summaries of researches using AMS, Nagoya University 6, pp 43–53 (in Japanese with English abstract)
Okuno M, Kobayashi T (2010) The latest magmatic eruption of Yokodake lava dome, Northern Yatsugatake Volcanoes, central Japan. In: Japanese geomorphological union 2010 abstract, O 22 (in Japanese)
Ono K (1990) Long-term forecast of volcanic eruptions. Bull Volcanol Soc Jpn 34:S201–S204 (in Japanese)
Google Scholar
Paterson GA, Tauxe L, Biggin AJ, Shaar R, Jonestrask LC (2014) On improving the selection of Thellier-type paleointensity data. Geochem Geophys Geosyst 15:1180–1192
Article
Google Scholar
Pérez-Rodríguez N, Morales J, Goguitchaichvili A, García-Tenorio F (2019) A comprehensive paleomagnetic study from the last Plinian eruptions of Popocatepetl volcano: absolute chronology of lavas and estimation of emplacement temperatures of PDCs. Earth Planets Space 71:80. https://doi.org/10.1186/s40623-019-1059-x
Article
Google Scholar
Prescott JR, Hutton JT (1994) Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiat Meas 23(2–3):497–500
Article
Google Scholar
Rees-Jones J (1995) Optical dating of young sediments using fine-grained quartz. Anc TL 13:9–14
Google Scholar
Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887
Article
Google Scholar
Risica G, Speranza F, Giordano G, De Astis G, Lucchi F (2019) Paleomagnetic dating of the Neostromboli succession. J Volcanol Geotherm Res 371:229–244
Article
Google Scholar
Sears DWG, Sears H, Sehlke A, Hughes SS (2018) Induced thermoluminescence as a method for dating recent volcanism: Hawaii County, Hawaii, USA. J Volcanol Geotherm Res 349:74–82
Article
Google Scholar
Shitaoka Y, Nagatomo T, Obata N (2009) Age determination of Ontake Pm1 pumice fall deposit (On-Pm1) by thermoluminescence method. Quat Res 48:295–300 (in Japanese)
Article
Google Scholar
Shitaoka Y, Hatano S, Tanabe K, Mori Y, Aoki S, Sakae O (2015) A new system for luminescence measurement and calibration of X-ray tube. Bull Geo-Environ Sci 17:107–110 (in Japanese)
Google Scholar
Shitaoka Y, Saito T, Yamamoto J, Miyoshi M, Ishibashi H, Soda T (2019) Eruption age of Kannabe volcano using multi-dating: implications for age determination of young basaltic lava flow. Geochronometria 46:49–56
Article
Google Scholar
Tauxe L, Staudigel H (2004) Strength of the geomagnetic field in the cretaceous normal superchron: new data from submarine basaltic glass of the Troodos ophiolite. Geochem Geophys Geosyst 5(2):Q08H13
Article
Google Scholar
Yu Y (2012) High-fidelity paleointensity determination from historic volcanoes in Japan. J Geophys Res 117:B08101
Google Scholar
Yu Y, Tauxe L, Genevey A (2004) Toward an optimal geomagnetic field intensity determination technique. Geochem Geophys Geosyst 5(2):Q02H07
Article
Google Scholar
Zijderveld JDA (1967) A.C. demagnetization of rocks: analysis of results. In: Collinson DW, Creer KM, Runcorn SK (eds) Methods in palaeomagnetism. Elsevier, Amsterdam, pp 254–286
Google Scholar