Baba T, Takahashi N, Kaneda Y et al (2015) Parallel implementation of dispersive tsunami wave modeling with a nesting algorithm for the 2011 Tohoku Tsunami. Pure Appl Geophys 172:3455–3472. https://doi.org/10.1007/s00024-015-1049-2
Article
Google Scholar
Baba T, Allgeyer S, Hossen J et al (2017) Accurate numerical simulation of the far-field tsunami caused by the 2011 Tohoku earthquake, including the effects of Boussinesq dispersion, seawater density stratification, elastic loading, and gravitational potential change. Ocean Model 111:46–54. https://doi.org/10.1016/j.ocemod.2017.01.002
Article
Google Scholar
Baba T, Chikasada N, Nakamura Y et al (2020) Deep investigations of outer-rise tsunami characteristics using well-mapped normal faults along the Japan Trench. J Geophys Res Solid Earth 125:e2020JB020060. https://doi.org/10.1029/2020JB020060
Article
Google Scholar
Fauzi A, Mizutani N (2020) Potential of deep predictive coding networks for spatiotemporal tsunami wavefield prediction. Geosci Lett 7:20. https://doi.org/10.1186/s40562-020-00169-1
Article
Google Scholar
Fujii Y, Remy E, Zuo H et al (2019) Observing system evaluation based on ocean data assimilation and prediction systems: on-going challenges and future vision for designing/supporting ocean observational networks. Front Mar Sci. https://doi.org/10.3389/fmars.2019.00417
Article
Google Scholar
Fukutani Y, Suppasri A, Imamura F (2015) Stochastic analysis and uncertainty assessment of tsunami wave height using a random source parameter model that targets a Tohoku-type earthquake fault. Stoch Environ Res Risk Assess 29:1763–1779. https://doi.org/10.1007/s00477-014-0966-4
Article
Google Scholar
Goda K, Mai PM, Yasuda T, Mori N (2014) Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake. Earth Planet Space 66:1–20. https://doi.org/10.1186/1880-5981-66-105
Article
Google Scholar
Gusman AR, Mulia IE, Satake K et al (2016) Estimate of tsunami source using optimized unit sources and including dispersion effects during tsunami propagation: The 2012 Haida Gwaii earthquake. Geophys Res Lett. https://doi.org/10.1002/2016GL070140
Article
Google Scholar
Hadihardaja IK, Latief H, Mulia IE (2011) Decision support system for predicting tsunami characteristics along coastline areas based on database modelling development. J Hydroinform. https://doi.org/10.2166/hydro.2010.001
Article
Google Scholar
Hayes GP, Moore GL, Portner DE et al (2018) Slab2, a comprehensive subduction zone geometry model. Science 362(6410):58–61. https://doi.org/10.1126/science.aat4723
Article
Google Scholar
Heidarzadeh M, Wang Y, Satake K, Mulia IE (2019) Potential deployment of offshore bottom pressure gauges and adoption of data assimilation for tsunami warning system in the western Mediterranean Sea. Geosci Lett. https://doi.org/10.1186/s40562-019-0149-8
Article
Google Scholar
Hoffman RN, Atlas R (2016) Future observing system simulation experiments. Bull Am Meteorol Soc 97:1601–1616. https://doi.org/10.1175/BAMS-D-15-00200.1
Article
Google Scholar
Inazu D, Waseda T, Hibiya T, Ohta Y (2016) Assessment of GNSS-based height data of multiple ships for measuring and forecasting great tsunamis. Geosci Lett. https://doi.org/10.1186/s40562-016-0059-y
Article
Google Scholar
Inoue M, Tanioka Y, Yamanaka Y (2019) Method for near-real time estimation of Tsunami sources using ocean bottom pressure sensor network (S-net). Geoscience. https://doi.org/10.3390/geosciences9070310
Article
Google Scholar
Kanazawa T, Uehira K, Mochizuki M, et al (2016) S-net project, cabled observation network for earthquake and tsunamis. In: Suboptic2016. p WE2B3
Kaneda Y, Kawaguchi K, Araki E et al (2015) Development and application of an advanced ocean floor network system for megathrust earthquakes and tsunamis. SEAFLOOR OBSERVATORIES: A New Vision of the Earth from the Abyss. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 643–662
Chapter
Google Scholar
Kubota T, Chikasada NY, Tsushima H, Suzuki W (2020a) Tsunami analysis using the S-net pressure gauge records during the Mw 7.0 Off-Fukushima earthquake on 22 Novenver 2016 to reduce the effects of tsunami-irrelevant pressure components. Abstr. HDS08–11 Present. JpGU-AGU Jt. Meet. 2020, virtual Meet. Japan, 12–16 July 2020
Kubota T, Saito T, Suzuki W (2020) Millimeter-scale tsunami detected by a wide and dense observation array in the deep ocean: fault modeling of an Mw 6.0 interplate earthquake off Sanriku NE Japan. Geophys Res Lett 47:e2019GL085842. https://doi.org/10.1029/2019GL085842
Article
Google Scholar
Kubota T, Suzuki W, Nakamura T et al (2018) Tsunami source inversion using time-derivative waveform of offshore pressure records to reduce effects of non-tsunami components. Geophys J Int 215:1200–1214. https://doi.org/10.1093/GJI/GGY345
Article
Google Scholar
Lee JW, Irish JL, Weiss R (2020) Rapid prediction of alongshore run-up distribution from near-field tsunamis. Nat Hazards. https://doi.org/10.1007/s11069-020-04209-z
Article
Google Scholar
Maeda T, Obara K, Shinohara M et al (2015) Successive estimation of a tsunami wavefield without earthquake source data: a data assimilation approach toward real-time tsunami forecasting. Geophys Res Lett 42:7923–7932. https://doi.org/10.1002/2015GL065588
Article
Google Scholar
Mai PM, Beroza GC (2002) A spatial random field model to characterize complexity in earthquake slip. J Geophys Res Solid Earth 107(B11):2308. https://doi.org/10.1029/2001jb000588
Article
Google Scholar
Mai PM, Spudich P, Boatwright J (2005) Hypocenter locations in finite-source rupture models. Bull Seismol Soc Am 95:965–980. https://doi.org/10.1785/0120040111
Article
Google Scholar
Mizutani A, Yomogida K, Tanioka Y (2020) Early tsunami detection with near-fault ocean-bottom pressure gauge records based on the comparison with seismic data. J Geophys Res Ocean 125:e2020JC016275. https://doi.org/10.1029/2020JC016275
Article
Google Scholar
Mochizuki M, Uehira K, Kanazawa T et al (2018) S-net project: Performance of a large-scale seafloor observation network for preventing and reducing seismic and tsunami disasters. 2018 Ocean - MTS/IEEE Kobe Techno-Oceans. Ocean - Kobe 2018:1–4. https://doi.org/10.1109/OCEANSKOBE.2018.8558823
Article
Google Scholar
Mulia IE, Asano T, Nagayama A (2016) Real-time forecasting of near-field tsunami waveforms at coastal areas using a regularized extreme learning machine. Coast Eng. https://doi.org/10.1016/j.coastaleng.2015.11.010
Article
Google Scholar
Mulia IE, Gusman AR, Satake K (2017a) Optimal design for placements of tsunami observing systems to accurately characterize the inducing earthquake. Geophys Res Lett. https://doi.org/10.1002/2017GL075791
Article
Google Scholar
Mulia IE, Inazu D, Waseda T, Gusman AR (2017b) Preparing for the future Nankai trough tsunami: a data assimilation and inversion analysis from various observational systems. J Geophys Res Ocean 122:7924–7937. https://doi.org/10.1002/2017JC012695
Article
Google Scholar
Mulia IE, Gusman AR, Williamson AL, Satake K (2019) An optimized array configuration of tsunami observation network off southern java, Indonesia. J Geophys Res Solid Earth 124:9622–9637. https://doi.org/10.1029/2019JB017600
Article
Google Scholar
Mulia IE, Satake K (2020) Developments of tsunami observing systems in Japan. Front Earth Sci. https://doi.org/10.3389/feart.2020.00145
Article
Google Scholar
Mulia IE, Ishibe T, Satake K et al (2020) Regional probabilistic tsunami hazard assessment associated with active faults along the eastern margin of the Sea of Japan. Earth Planets Space 72:123. https://doi.org/10.1186/s40623-020-01256-5
Article
Google Scholar
Murphy S, Scala A, Herrero A et al (2016) Shallow slip amplification and enhanced tsunami hazard unravelled by dynamic simulations of mega-thrust earthquakes. Sci Rep 6:1–12. https://doi.org/10.1038/srep35007
Article
Google Scholar
Navarrete P, Cienfuegos R, Satake K et al (2020) Sea surface network optimization for tsunami forecasting in the near field: application to the 2015 Illapel earthquake. Geophys J Int 221:1640–1650. https://doi.org/10.1093/gji/ggaa098
Article
Google Scholar
Nikkhoo M, Walter TR (2015) Triangular dislocation: an analytical, artefact-free solution. Geophys J Int 201:1119–1141. https://doi.org/10.1093/gji/ggv035
Article
Google Scholar
Nishikawa T, Matsuzawa T, Ohta K et al (2019) The slow earthquake spectrum in the Japan Trench illuminated by the S-net seafloor observatories. Science 365:808–813. https://doi.org/10.1126/science.aax5618
Article
Google Scholar
Polster A, Fabian M, Villinger H (2009) Effective resolution and drift of paroscientific pressure sensors derived from long-term seafloor measurements. Geochem Geophys Geosyst 11:6. https://doi.org/10.1029/2009GC002532
Article
Google Scholar
Saito T, Kubota T (2020) Tsunami Modeling for the Deep Sea and Inside Focal Areas. Annu Rev Earth Planet Sci 48:121–145. https://doi.org/10.1146/annurev-earth-071719-054845
Article
Google Scholar
Saito T, Tsushima H (2016) Synthesizing ocean bottom pressure records including seismic wave and tsunami contributions: Toward realistic tests of monitoring systems. J Geophys Res Solid Earth 121:8175–8195. https://doi.org/10.1002/2016JB013195
Article
Google Scholar
Satake K (1987) Inversion of tsunami waveforms for the estimation of a fault heterogeneity: method and numerical experiments. J Phys Earth 35:241–254
Article
Google Scholar
Satake K (1989) Inversion of tsunami waveforms for the estimation of heterogeneous fault motion of large submarine earthquakes: the 1968 Tokachi-oki and 1983 Japan Sea earthquakes. J Geophys Res Solid Earth 94:5627–5636. https://doi.org/10.1029/JB094iB05p05627
Article
Google Scholar
Satake K, Fujii Y, Harada T, Namegaya Y (2013) Time and Space Distribution of Coseismic Slip of the 2011 Tohoku Earthquake as Inferred from Tsunami Waveform Data. Bull Seism Soc Am 103:1473–1492
Article
Google Scholar
Sepúlveda I, Liu PLF, Grigoriu M, Pritchard M (2017) Tsunami hazard assessments with consideration of uncertain earthquake slip distribution and location. J Geophys Res Solid Earth 122:7252–7271. https://doi.org/10.1002/2017JB014430
Article
Google Scholar
Tanioka Y (2018) Tsunami simulation method assimilating ocean bottom pressure data near a tsunami source region. Pure Appl Geophys 175:721–729. https://doi.org/10.1007/s00024-017-1697-5
Article
Google Scholar
Tanioka Y (2020) Improvement of near-field tsunami forecasting method using ocean-bottom pressure sensor network (S-net). Earth Planets Space 72:132. https://doi.org/10.1186/s40623-020-01268-1
Article
Google Scholar
Tsushima H, Hino R, Fujimoto H et al (2009) Near-field tsunami forecasting from cabled ocean bottom pressure data. J Geophys Res 114:B06309. https://doi.org/10.1029/2008JB005988
Article
Google Scholar
Tsushima H, Hirata K, Hayashi Y, et al (2012a) Effect of offshore tsunami station array configuration on accuracy of near-field tsunami forecast. J Jpn Soc Civil Eng, Ser. B2 (Coastal Engineering), 68(2):I_211-I_215. https://doi.org/https://doi.org/10.2208/kaigan.68.I_211
Tsushima H, Hino R, Tanioka Y et al (2012) Tsunami waveform inversion incorporating permanent seafloor deformation and its application to tsunami forecasting. J Geophys Res 117:B03311. https://doi.org/10.1029/2011JB008877
Article
Google Scholar
Wallace LM, Araki E, Saffer D et al (2016) Near-field observations of an offshore Mw 6.0 earthquake from an integrated seafloor and subseafloor monitoring network at the Nankai Trough, southwest Japan. J Geophys Res Solid Earth 121:8338–8351. https://doi.org/10.1002/2016JB013417
Article
Google Scholar
Wang Y, Satake K, Sandanbata O et al (2019) Tsunami data assimilation of cabled ocean bottom pressure records for the 2015 Torishima Volcanic Tsunami Earthquake. J Geophys Res Solid Earth 124:10413–10422. https://doi.org/10.1029/2019JB018056
Article
Google Scholar
Wang Y, Heidarzadeh M, Satake K et al (2020) A tsunami warning system based on offshore bottom pressure gauges and data assimilation for Crete Island in the Eastern Mediterranean Basin. J Geophys Res Solid Earth 125:e2020JB020293. https://doi.org/10.1029/2020JB020293
Article
Google Scholar
Weatherall P, Marks KM, Jakobsson M et al (2015) A new digital bathymetric model of the world’s oceans. Earth Space Sci 2(8):331–345. https://doi.org/10.1002/2015EA000107
Article
Google Scholar
Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull - Seismol Soc Am 84:974–1002
Google Scholar
Williamson AL, Newman AV (2018) Suitability of open-ocean instrumentation for use in near-field tsunami early warning along seismically active subduction zones. Pure Appl Geophys 176:3247–3262. https://doi.org/10.1007/s00024-018-1898-6
Article
Google Scholar
Williamson AL, Melgar D, Rim D (2019) The effect of earthquake kinematics on tsunami propagation. J Geophys Res Solid Earth 124(11):11639–11650
Article
Google Scholar
Yamamoto N, Aoi S, Hirata K et al (2016) Multi-index method using offshore ocean-bottom pressure data for real-time tsunami forecast. Earth Planet Space 68:128. https://doi.org/10.1186/s40623-016-0500-7
Article
Google Scholar
Yilmaz M, Migliacio P, Bernard E. (2004) Broadband vibrating quartz pressure sensors for tsunameter and other oceanographic applications. Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600), Kobe 2004, pp. 1381–1387 Vol.3. https://doi.org/10.1109/OCEANS.2004.1405783.