Abe, K., Seismic displacement and ground motion near a fault: The Saitama Earthquake of September 21, 1931, J. Geophys. Res., 79(29), 4393–4399, 1974a.
Article
Google Scholar
Abe, K., Fault parameters determined by near- and far-field data: The Wakasa Bay earthquake of March 26, 1963, Bull. Seismol. Soc. Am., 64(5), 1369–1382, 1974b.
Google Scholar
Aoi, S., B. Enescu, W. Suzuki, Y. Asano, K. Obara, T. Kunugi, and K. Shiomi, Stress transfer in the Tokai subduction zone from the 2009 Suruga Bay earthquake in Japan, Nature Geosci., 3, 496–500, doi:10.1038/ngeo885, 2010.
Article
Google Scholar
Chinnery, M. A., The deformation of the ground around surface faults, Bull. Seismol. Soc. Am., 51(3), 355–372, 1961.
Google Scholar
Chinnery, M. A., The strength of the earth’s crust under horizontal shear stress, J. Geophys. Res., 69(10), 2085–2089, 1964.
Article
Google Scholar
Cocco, M., S. Hainzl, F. Catalli, B. Enescu, A. M. Lombardi, and J. Woessner, Sensitivity study of forecasted aftershock seismicity based on Coulomb stress calculation and rate- and state-dependent frictional response, J. Geophys. Res., 115, B05307, doi:10.1029/2009JB006838, 2010.
Google Scholar
Dietrich, J. H., A constructive law for rate of earthquake production and its application to earthquake clustering, J. Geophys. Res., 99(B2), 2601–2618, 1994.
Article
Google Scholar
Enescu, B. and K. Ito, Some premonitory phenomena of the 1995 Hyogo-ken Nanbu earthquake: seismicity, b-value and fractal dimension, Tectonophysics, 338(3–4), 297–314, 2001.
Article
Google Scholar
Eneva, M., R. E. Habermann, and M. W. Hamburger, Artificial and natural changes in the rates of seismic activity: a case study of the Garm Region, Tadjikistan (CIS), Geophys. J. Int., 116, 157–172, 1994.
Article
Google Scholar
Fukuyama, E., M. Ishida, D. S. Dreger, and H. Kawai, Automated seismic moment tensor determination by using on-line broadband seismic waveforms, Zisin 2, 51, 149–156, 1998 (in Japanese with English abstract).
Google Scholar
Habermann, R. E., Precursory seismicity patterns: Stalking the mature seismic gap, in Earthquake Prediction Maurice Ewing Series IV, edited by D. W. Simpson and P. G. Richards, 29–42, AGU, Washington, D.C., 1981.
Google Scholar
Habermann, R. E., Consistency of teleseismic reporting since 1963, Bull. Seismol. Soc. Am., 72(1), 93–112, 1982a.
Google Scholar
Habermann, R. E., Seismicity rates in the Kuriles Island Arc, 1973–1979, Earthq. Pred. Res., 1, 73–94, 1982b.
Google Scholar
Habermann, R. E., Teleseismic detection in the Aleutian Island Arc, J. Geophys. Res., 88(B6), 5056–5064, 1983.
Article
Google Scholar
Habermann, R. E., Man-made changes of seismicity rates, Bull. Seismol. Soc. Am., 77(1), 141–159, 1987.
Google Scholar
Habermann, R. E., Seismicity rate variations and systematic changes in magnitudes in teleseismic catalogs, Tectonophysics, 193, 277–289, 1991.
Article
Google Scholar
Habermann, R. E. and M. Wyss, Background seismicity rates and precursory seismic quiescence—Imperial Valley, California, Bull. Seismol. Soc. Am., 74(5), 1743–1755, 1984.
Google Scholar
Hainzl, S. and Y. Ogata, Detecting fluid signals in seismicity data through statistical earthquake modeling, J. Geophys. Res., 110, B05S07, doi:10.1029/2004JB003247, 2005.
Google Scholar
Hardebeck, J. L., J. J. Nazareth, and E. Hauksson, The static stress change triggering model: Constraints from two southern California aftershock sequences, J. Geophys. Res., 103(B10), 24427–24437, 1998.
Article
Google Scholar
Harris, R. A., Introduction to special section: stress triggers, stress shadows, and implications for seismic hazard, J. Geophys. Res., 103(B10), 24347–24358, 1998.
Article
Google Scholar
Harris, R. A. and R. W. Simpson, Changes in static stress on southern California faults after the 1992 Landers earthquake, Nature, 360, 251–254, 1992.
Article
Google Scholar
Harris, R. A. and R. W. Simpson, In the shadow of 1857—the effect of the great Ft. Tejon earthquake on subsequent earthquakes in Southern California, Geophys. Res. Lett., 23(3), 229–232, 1996.
Article
Google Scholar
Harris, R. A., R. W. Simpson, and P. A. Reasenberg, Influence of static stress changes on earthquake locations in southern California, Nature, 375, 221–224, 1995.
Article
Google Scholar
Hashimoto, M., Static stress changes associated with the Kobe Earthquake: Calculation of changes in Coulomb Failure Function and comparison with seismicity change, Zisin 2, 48, 521–530, 1995 (in Japanese with English abstract).
Google Scholar
Hashimoto, M., Correction to “Static stress changes associated with the Kobe Earthquake: Calculation of changes in Coulomb Failure Function and comparison with seismicity change”, Zisin 2, 50, 21–27, 1997 (in Japanese with English abstract).
Google Scholar
Helmstetter, A. and D. Sornette, Importance of direct and indirect triggered seismicity in the ETAS model of seismicity, Geophys. Res. Lett., 30(11), 1576, doi: 10.1029/2003GL017670, 2003.
Article
Google Scholar
Huang, Q. and T. Nagao, Seismic quiescence before the 2000 M = 7.3 Tottori earthquake, Geophys. Res. Lett., 29(12), 1578, doi: 10.1029/2001GL013835, 2002.
Article
Google Scholar
Huang, Q., G. A. Sobolev, and T. Nagao, Characteristics of the seismic quiescence and activation patterns before the M = 7.2 Kobe earthquake, January 17, 1995, Tectonophysics, 337, 99–116, 2001.
Article
Google Scholar
Imoto, M., Changes in seismicity of microearthquakes before major earthquakes in the Kanto area, Zisin 2, 45(2), 177–185, 1992 (in Japanese with English abstract).
Google Scholar
Inouye, W., On the seismicity in the epicentral region and its neighborhood before the Niigata earthquake, Kenshin-jiho (Q. J. Seismol.), 29, 139–144, 1965 (in Japanese with English abstract).
Google Scholar
Ishibe, T., Spatial distribution of shallow crustal earthquakes and a source region of a large earthquake, Doctor Thesis, Department of Earth and Planetary Science, University of Tokyo, 120 pp, 2007.
Google Scholar
Ishigaki, Y., Monitoring method for seismic activity in Japan— Development of a modified ETAS model through analysis of aftershock activities of M7.0, Kenshin-jiho (Q. J. Seismol.), 72(1–4), 1–25, 2009 (in Japanese with English abstract).
Google Scholar
Japanese Network of Crustal Movement Observatories, Spatial distribution of strain-steps associated with the Earthquake of the Central Part of Gifu Prefecture, September 9, 1969, Bull. Earthq. Res. Inst., 48(6), 1217–1233, 1970 (in Japanese with English abstract).
Google Scholar
Kanamori, H., Determination of effective tectonic stress associated with earthquake faulting, The Tottori earthquake of 1943, Phys. Earth Planet. Inter., 5, 426–434, 1972.
Article
Google Scholar
Kanamori, H., Mode of strain release associated with major earthquakes in Japan, Ann. Rev. Earth Planet. Sci., 1, 213–239, 1973.
Article
Google Scholar
Kasahara, K., The nature of seismic origins as inferred from seismological and geodetic observations, Bull. Earthq. Res. Inst., 35, 473–532, 1957.
Google Scholar
Kasahara, K., The nature of seismic origins as inferred from seismological and geodetic observations, Bull. Earthq. Res. Inst., 36, 21–53, 1958.
Google Scholar
Kasaya, T., N. Oshiman, N. Sumitomo, M. Uyeshima, Y. Ito, and D. Uehara, Resistivity structure around the hypocentral area of the 1984 Western Nagano Prefecture earthquake in central Japan, Earth Planets Space, 54, 107–118, 2002.
Article
Google Scholar
Katsumata, K., Imaging the high b-value anomalies within the subducting Pacific plate in the Hokkaido corner, Earth Planets Space, 58, e49–e52, 2006.
Article
Google Scholar
Katsumata, K. and M. Kasahara, Precursory seismic quiescence before the 1994 Kuril Earthquake (Mw = 8.3) revealed by three independent seismic catalogs, Pure Appl. Geophys., 55, 443–470, 1999.
Article
Google Scholar
Katsumata, K. and M. Kasahara, Making a temporally homogeneous seismic catalog, Geophys. Bull. Hokkaido Univ., 67, 213–224, 2004 (in Japanese with English abstract).
Google Scholar
Kawasaki, I., The focal process of the Kita-Mino earthquake of August 19, 1961, and its relationship to a Quaternary fault, Hatogayu-Koike fault, J. Phys. Earth, 23, 227–250, 1975.
Article
Google Scholar
Kelleher, J. and J. Savino, Distribution of seismicity before large strike slip and thrust-type earthquakes, J. Geophys. Res., 80(2), 260–271, 1975.
Article
Google Scholar
Kikuchi, M., EIC Seismological Note (No. 93s): Tottori-Ken Seibu earthquake (M7.3) of October, 6, 2000, http://www.eri.u-tokyo.ac.jp/ sanchu/Seismo Note/EIC News/001006.html, 2000.
Kikuchi, M., M. Nakamura, M. Yamada, M. Fushimi, Y. Tatsumi, and K. Yoshikawa, Source parameters of the 1948 Fukui Earthquake inferred from low-gain strong-motion records, Zisin 2, 52, 121–128, 1999 (in Japanese with English abstract).
Google Scholar
King, G. C. P., R. S. Stein, and J. Lin, Static stress changes and the triggering of earthquake, Bull. Seismol. Soc. Am., 84(3), 935–953, 1994.
Google Scholar
Kisslinger, C., An experiment in earthquake prediction and the 7th May 1986 Andreanof Islands Earthquake, Bull. Seismol. Soc Am., 78(1), 218–229, 1988.
Google Scholar
Ma, K. F., C. H. Chan, and R. S. Stein, Response of seismicity to Coulomb stress triggers and shadows of the 1999 Mw=7.6 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 110(B5), doi:10.1029/2004JB003389, 2005.
Google Scholar
Mikumo, T., Faulting mechanism of the Gifu earthquake of September 9, 1969, and some related problems, J. Phys. Earth, 21, 191–212, 1973.
Article
Google Scholar
Mikumo, K., H. Wada, S. Kaneshima, K. Imagawa, and M. Koizumi, Seismic activity in the northern Hida region before and after the 1984 western Nagano Prefecture earthquake, and the faulting mechanism of the main shock event, in Synthetic Investigation of Earthquake and Damage of the Western Nagano Prefecture Earthquake, 1984, pp 21–33, Ministry of Education, Tokyo, 1985 (in Japanese).
Google Scholar
Miyaoka, K. and A. Yoshida, Quiescence and precursory seismic activity before large interplate earthquakes along the Japan trench, Zisin 2, 45(4), 395–495, 1993 (in Japanese with English abstract).
Google Scholar
Mogi, K., Some features of recent seismic activity in and near Japan (2) Activity before and after great earthquakes, Bull. Earthq. Res. Inst., 47, 395–417, 1969.
Google Scholar
Mueller, K., S. E. Hough, and R. Bilham, Analysing the 1811-1812 New Madrid earthquakes with recent instrumentally recorded aftershocks, Nature, 429, 284–288, 2004.
Article
Google Scholar
Nakata, T., T. Kumamoto, Y. Kumahara, and Y. Yamanaka, “Morphometric Unit Model” of active faults for packaging faults into individual seismogenic faults, Active Fault Res., 24, 39–48, 2004 (in Japanese with English abstract).
Google Scholar
Nanjo, K. Z., T. Ishibe, H. Tsuruoka, D. Schorlemmer, N. Hirata, and Y. Ishigaki, Analysis of the completeness magnitude and seismic network coverage of Japan, Bull. Seismol. Soc. Am., 100(6), 3261–3268, 2010.
Article
Google Scholar
Nanjo, K. Z., H. Tsuruoka, N. Hirata, and T. H. Jordan, Overview of the first earthquake forecast testing experiment in Japan, Earth Planets Space, 63, this issue, 159–169, 2011.
Article
Google Scholar
Obara, K., K. Kasahara, S. Hori, and Y. Okada, A densely distributed high-sensitivity seismograph network in Japan: Hi-net by National Research Institute for Earth Science and Disaster Prevention, Rev. Sci. Instrum., 76, 021301, 2005.
Article
Google Scholar
Odaka, S. and K. Maeda, Changes in seismic activities in the focal region and nearby seismic nests before the 1987 Chiba-toho-oki earthquake, Zisin 2, 47, 365–374, 1994 (in Japanese with English abstract).
Google Scholar
Ogata, Y., Monitoring of anomaly in the aftershock sequence of the 2005 earthquake of M7.0 off coast of the western Fukuoka, Japan, by the ETAS model, Geophys. Res. Lett., 33, L01303, doi:10. 1029/2005GL024405, 2006.
Article
Google Scholar
Ogata, Y., Seismicity and geodetic anomalies in a wide area preceding the Niigata-Ken-Chuetsu earthquake of 23 October 2004, central Japan, J. Geophys. Res., 112, B10301, doi:10.1029/2006JB004697, 2007.
Article
Google Scholar
Ogata, Y. and S. Toda, Bridging great earthquake doublets through silent slip: On- and off-fault aftershocks of the 2006 Kuril Island subduction earthquake toggled by a slow slip on the outer rise normal fault the 2007 great earthquake, J. Geophys. Res., 115, B06318, doi:10.1029/2009JB006777, 2010.
Google Scholar
Ohtake, M., T. Matsumoto, and G. V. Latham, Seismicity gap near Oaxaca, southern Mexico as a probable precursor to a large earthquake, Pure Appl. Geophys., 115, 375–385, 1977.
Article
Google Scholar
Okada, Y., Internal deformation due to shear and tensile faults in a half space, Bull. Seismol. Soc. Am., 82(2), 1018–1040, 1992.
Google Scholar
Okada, Y., K. Kasahara, S. Hori, K. Obara, S. Sekiguchi, H. Fujiwara, and A. Yamamoto, Recent progress of seismic observation networks in Japan—Hi-net, F-net, K-NET and KiK-net—, Earth Planets Space, 56, xv–xxviii, 2004.
Article
Google Scholar
Omori, F., On after-shocks of earthquakes, J. Fact. Sci. Univ. Tokyo, 7, 111–120, 1894.
Google Scholar
Perez, O. J. and C. H. Scholtz, Heterogeneities of the instrumental seismicity catalog (1904-1980) for strong shallow earthquakes, Bull. Seismol. Soc. Am., 74(2), 669–686, 1984.
Google Scholar
Reasenberg, P. A., Second-order moment of Central California seismicity, 1969–1982, J. Geophys. Res., 90(B7), 5479–5495, 1985.
Article
Google Scholar
Reasenberg, P. A. and R. W. Simpson, Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake, Science, 255, 1687–1690, 1992.
Article
Google Scholar
Sagiya, T., S. Miyazaki, and T. Tada, Continuous GPS array and present-day crustal deformation of Japan, Pure Appl. Geophys., 157, 2303–2322, 2000.
Google Scholar
Sato, H., A study of horizontal movement of the earth crust associated with destructive earthquakes in Japan, Bull. Geogr. Surv. Inst., 19, 89–130, 1973.
Google Scholar
Schorlemmer, D., N. Hirata, F. Euchner, Y. Ishigaki, and H. Tsuruoka, A probabilistic completeness study in Japan, The 7th General Assembly of Asian Seismological Commission and Seismological Society of Japan, 2008 Fall Meeting, Program and abstract, Y3-214, Tsukuba, Japan, 24–27 November, 2008, 2008.
Simpson, R. W. and P. A. Reasenberg, Earthquake-induced static-stress changes on central California faults, in The Loma Prieta, California, Earthquake of October 17, 1989-Tectonic Processes and Models, U.S. Geol. Surv. Prof. Pap., 1550-F, 55–89, 1994.
Google Scholar
Steacy, S., J. Gomberg, and M. Cocco, Introduction to special section: Stress transfer, earthquake triggering, and time-dependent seismic hazard, J. Geophys. Res., 110, B05S01, doi:10.1029/2005JB003692, 2005.
Google Scholar
Stein, R. S., The role of stress transfer in earthquake occurrence, Nature, 402, 605–609, 1999.
Article
Google Scholar
Stein, R. S., G. C. P. King, and J. Lin, Change in Failure Stress on the Southern San Andreas fault system caused by the 1992 magnitude = 7.4 Landers Earthquake, Science, 258, 1328–1332, 1992.
Article
Google Scholar
Stein, R. S., G. C. P. King, and J. Lin, Stress triggering of the 1994 Mw = 6.7 Northridge, California, Earthquake by its predecessors, Science, 265, 1432–1435, 1994.
Article
Google Scholar
Stein, S. and M. Liu, Long aftershock sequences within continents and implications for earthquake hazard assessment, Nature, 462, 87–89, 2009.
Article
Google Scholar
Takanami, T., I. S. Sacks, J. A. Snoke, Y. Motoya, and M. Ichiyanagi, Seismic quiescence before the Hokkaido-Toho-Oki earthquake of October 4, 1994, J. Phys. Earth, 44, 193–203, 1996.
Article
Google Scholar
Taylor, D. W. A., J. A. Snoke, I. S. Sacks, and T. Takanami, Seismic quiescence before the Urakawa-Oki earthquake, Bull. Seismol. Soc. Am., 81(4), 1255–1271, 1991.
Google Scholar
Toda, S., Coulomb stresses imparted by the 25 March 2007 Mw=6.6 Noto-Hanto, Japan, earthquake explain its ‘butterfly’ distribution of aftershocks and suggest a heightened seismic hazard, Earth Planets Space, 60, 1041–1046, 2008.
Article
Google Scholar
Toda, S. and B. Enescu, Rate/state Coulomb stress transfer model for the CSEP Japan seismicity forecast, Earth Planets Space, 63, this issue, 171–185, 2011.
Article
Google Scholar
Toda, S. and S. Matsumura, Spatio-temporal stress states estimated from seismicity rate changes in the Tokai region, central Japan, Tectonophysics, 417, 53–68, 2006.
Article
Google Scholar
Toda, S., R. S. Stein, P. A. Reasenberg, and J. H. Dieterich, Stress transferred by the Mw = 6.8 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities, J. Geophys. Res., 103(B10), 24543–24565, 1998.
Article
Google Scholar
Toda, S., R. S. Stein, and T. Sagiya, Evidence from the AD 2000 Izu islands earthquake swarm that stressing rate governs seismicity, Nature, 419, 58–61, 2002.
Article
Google Scholar
Tsuruoka, H., Development of seismicity analysis system on WWW (2), Programme and Abstracts, The Seismological Society of Japan, P04, 1997.
Tsuruoka, H., Development of seismicity analysis software on workstation, Tech. Res. Rep. ERI, Univ. Tokyo, 2, 34–42, 1998.
Google Scholar
Tsuruoka, H., N. Hirata, D. Schorlemmer, F. Euchner, K. Z. Nanjo, and T. H. Jordan, CSEP Testing Center and the first results of the earthquake forecast testing experiment in Japan, Earth Planets Space, 2011 (submitted).
Utsu, T., Statistical study on the occurrence of aftershocks, Geophys. Mag., 30, 521–605, 1961.
Google Scholar
Utsu, T., Seismic activity in Hokkaido and its vicinity, Geophys. Bull. Hokkaido Univ., 20, 51–75, 1968 (in Japanese with English abstract).
Utsu, T., Seismicity of Japan from 1885 through 1925: A new catalog of earthquakes of M=6 Felt in Japan and smaller earthquakes which caused damage in Japan, Bull. Earthq. Res. Inst., 54(2), 253–308, 1979 (in Japanese with English abstract).
Google Scholar
Utsu, T., Y. Ogata, and R. S. Matsu’ura, The century of the Omori formula for a decay law of aftershock activity, J. Phys. Earth, 43, 1–33, 1995.
Article
Google Scholar
Wessel, P. and W. H. F. Smith, Free software helps map and display data, Eos Trans. AGU, 72, 441, 1991.
Article
Google Scholar
Wiemer, S. and M. Wyss, Seismic quiescence before the Landers (M=7.5) and Big Bear (M=6.5) 1992 Earthquakes, Bull. Seismol. Soc. Am., 84(3), 900–916, 1994.
Google Scholar
Wyss, M., Seismic quiescence precursor to the 1983 Kaoiki (Ms = 6.6), Hawaii, earthquake, Bull. Seismol. Soc. Am., 76(3), 785–800, 1986.
Google Scholar
Wyss, M. and R. O. Burford, Current episodes of seismic quiescence along the San Andreas fault between San Juan Bautista and Stone Canyon, California: Possible precursors to local moderate mainshocks?, U.S. Geol. Surv., Open-File Rep., 85-745, 367–426, 1985.
Google Scholar
Yamasaki, N. and F. Tada, The Oku-Tango Earthquake of 1927, Bull. Earthq. Res. Inst., 4, 159–157, 1928.
Google Scholar
Yamashina, K. and T. Tada, A fault model of the 1984 Western Nagano Prefecture Earthquake based on the distance change of trilateration points, Bull. Earthq. Res. Inst., 60, 221–230, 1985 (in Japanese with English abstract).
Google Scholar
Zhuang, J., Y. Ogata, and D. Vere-Jones, Stochastic declustering of space-time earthquake occurrences, J. Am. Stat. Ass., 97, 369–380, 2002.
Article
Google Scholar