Amos, M. J. and W. E. Featherstone, Preparations for a new gravimetric geoid model of New Zealand, and some preliminary results, NZ Surv., 293, 9–20, 2003.
Google Scholar
Andersen, O. B., P. Knudsen, and R. Trimmer, Improved high resolution altimetric gravity field mapping (KMS2002 Global Marine Gravity Field), in AWindow on the Future of Geodesy: Proceedings of the IUGG 23rd General Assembly, Sapporo, Japan, 2003, IAG Symposia, edited by F. Sansò, 128, 326–331, Springer, Berlin Heidelberg New York, 2005.
Article
Google Scholar
Boucher, C., Z. Altamimi, M. Feissel, and P. Sillard, Results and analysis of the ITRF94, IERS Technical Note 20, Paris, 1996.
Ekman, M., Impacts on geodynamics phenomena on systems for height and gravity, Bull. Géod., 63, 281–296, 1989.
Article
Google Scholar
Featherstone, W. E., J. D. Evans, and J. G. Olliver, A Meissl-modified Vaníček and Kleusberg kernel to reduce the truncation error in gravimetric geoid computations, J. Geod., 72, 154–160, 1998.
Article
Google Scholar
Fukuda, Y., J. Kuroda, Y. Takabatake, J. Itoh, and M. Murakami, Improvement of JGEOID93 by the geoidal heights derived from GPS/levelling survey, in Gravity, Geoid and Marine Geodesy, IAG Symposia, edited by J. Segawa, H. Fujimoto, and S. Okubo, 117, 589–596, Springer, 1997.
Article
Google Scholar
Ganeko, Y., Astrogeodetic geoid of Japan, Smithsonian Astrophysical Observatory, Special Report, 372, 1976.
Heiskanen, W. A. and H. Moritz, Physical Geodesy, Freeman and Company, San Francisco, 1967.
Google Scholar
Imakiire, T. and E. Hakoiwa, JGD2000 (vertical)—The new height system of Japan, Bulletin of the Geographical Survey Institute, 51, 31–51, 2004.
Google Scholar
Krige, D. G., A statistical approach to some basic mine valuation problems on the Witwatersrand, J. Chem. Metall. Min. Soc. S. Afr., 52 (6), 119–139, 1951.
Google Scholar
Kuroda, J., J. Takabatake, M. Matsushima, and Y. Fukuda, Integration of gravimetric geoid and GPS/leveling survey by least squares collocation, J Geogr Surv Inst., 87, 1–3, 1997 (in Japanese).
Google Scholar
Kuroishi, Y., Precise gravimetric determination of geoid in the vicinity of Japan, Bull. Geogr. Surv. Inst., 41, 1–93, 1995.
Google Scholar
Kuroishi, Y., An improved gravimetric geoid for Japan, JGEOID98, and relationships to marine gravity data, J. Geod., 74, 745–755, 2001a.
Article
Google Scholar
Kuroishi, Y., A new geoid model for Japan, JGEOID2000, in Gravity, Geoid and Geodynamics 2000, IAG Symposia, edited by M. G. Sideris, 123, 329–333, Springer, Berlin Heidelberg New York, 2001b.
Article
Google Scholar
Kuroishi, Y., Improved geoid determination for Japan from GRACE and a regional gravity field model, Earth Planets Space, 61, 807–813, 2009.
Article
Google Scholar
Kuroishi, Y. and H. Denker, Development of improved gravity field models around Japan, in Gravity, Geoid and Geodynamics 2000, IAG Symposia, edited by M. G. Sideris, 123, 317–322, Springer, New York, 2001.
Article
Google Scholar
Kuroishi, Y. and W. Keller, Wavelet approach to improvement of gravity field-geoid modelling for Japan, J. Geophys. Res., 110, B03402, doi:10.1029/2004JB003371, 2005.
Google Scholar
Kuroishi, Y., H. Ando, and Y. Fukuda, A new hybrid geoid model for Japan, GSIGEO 2000, J. Geod., 76, 428–436, 2002.
Article
Google Scholar
Lemoine, F. G., D. E. Smith, L. Kunz, R. Smith, E. C. Pavlis, N. K. Pavlis, S. M. Klosko, D. S. Chinn, M. H. Torrence, R. G. Williamson, C. M. Cox, K. E. Rachlin, Y. M. Wang, S. C. Kenyon, R. Salman, R. Trimmer, R. H. Rapp, and R. S. Nerem, The development of the NASA GSFC and NIMA joint geopotential model, in Gravity, Geoid and Marine Geodesy, IAG Symposia, edited by J. Segawa, H. Fujimoto, and S. Okubo, 117, 461–469, Springer, 1997.
Article
Google Scholar
Martinec, Z., C. Matyska, E. W. Grafarend, and P. Vaníček, On Helmert’s 2nd condensation method, Manuscripta Geodaetica, 18, 417–421, 1993.
Google Scholar
Matsumura, S., M. Murakami, and T. Imakiire, Concept of the new Japanese geodetic system, Bull. Geogr. Surv. Inst., 51, 1–9, 2004.
Google Scholar
Meissl, P., Preparations for the numerical evaluation of second-order Molodensky-type formulas, Report No. 163, Department of Geodetic Science & Surveying, Ohio State University, Columbus, 1971.
Google Scholar
Moritz, H., Linear solutions of the geodetic boundary-value problem, Report No. 79, Department of Geodetic Science and Surveying, Ohio State University, Columbus, 1966.
Google Scholar
Moritz, H., Advanced Physical Geodesy, Abacus Press, London, England, 1980.
Google Scholar
Olea, R. A., Optimal contour mapping using Universal Kriging, J. Geophys. Res., 79, 695–702, 1974.
Article
Google Scholar
Pavlis, N. K., S. A. Holmes, S. C. Kenyon, and J. K. Factor, An Earth gravitational model to degree 2160: EGM2008, The 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13–18,2008.
Pellinen, L. P., Accounting for topography in the calculation of quasigeoidal heights and plumb-line deflections from gravity anomalies, Bull. Géod., 63, 57–65, 1962.
Article
Google Scholar
Rapp, R. H., Y. M. Wang, and N. K. Pavlis, The Ohio State 1991 geopotential and sea surface topography harmonic coefficient models, Report No. 410, Department of Geodetic Science and Surveying, Ohio State University, Columbus, 1991.
Google Scholar
Shichi, R. and A. Yamamoto, List of gravity data measured by Nagoya University, Bull. Nagoya Univ. Museum, Special Report No. 9, Part I, 2001a.
Shichi, R. and A. Yamamoto, List of Gravity Data Measured by Organizations other than Nagoya University, Bull. Nagoya Univ. Museum, Special Report No. 9, Part II, 2001b.
Sideris, M. G. and R. Forsberg, Review of geoid prediction methods in mountainous regions, in Determination of the Geoid, Present and Future, Milan, June 11–13, 1990, IAG Symposia, edited by R. H. Rapp, and F. Sansó, 106, 51–62, Springer, Berlin Heidelberg New York, 1991.
Article
Google Scholar
Stokes, G. G., On the variation of gravity on the surface of the Earth, Trans. Camb. Phil. Soc., 8, 672–695, 1849.
Google Scholar
Tapley, B., J. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, B. Gunter, Z. Kang, P. Nagel, R. Pastor, T. Pekker, S. Poole, and F. Wang, GGMO2C—An improved Earth gravity field model from GRACE, J. Geod., 79, 467–478, 2005
Article
Google Scholar
Tobita, M., Coordinate transformation software “TKY2JGD” from Tokyo Datum to a geocentric reference system, Japanese Geodetic Datum 2000, Bull. Geogr. Surv. Inst., 97, 31–57, 2001 (in Japanese).
Google Scholar
Vanček, P. and A. Kleusberg, The Canadian geoid—Stokesian approach, Manuscr. Geodaet., 12, 86–98, 1987.
Google Scholar
Vaníček, P., J. Huang, P. Novák, S. Pagiatakis, M. Véronneau, Z. Martinec, and W. E. Featherstone, Determination of the boundary values for the Stokes-Helmert problem, J. Geod., 73, 180–192, 1999.
Article
Google Scholar
Wang, Y. M. and R. H. Rapp, Terrain effects on geoid undulation computations, Manuscripta Geodaetica, 15, 23–29, 1990.
Google Scholar
Wichiencharoen, C., Fortran programs for computing geoid undulations from potential coefficients and gravity anomalies, Internal Report, Department of Geodetic Science and Surveying, Ohio State University, Columbus, 1982a.
Google Scholar
Wichiencharoen, C., The indirect effects on the computation of geoid undulations, Report No. 336, Department of Geodetic Science and Surveying, Ohio State University, Columbus, 1982b.
Google Scholar
Wong, L. and R. Gore, Accuracy of geoid heights from modified Stokes kernels, Geophys. J. R. Astron. Soc, 18, 81–91, 1969.
Article
Google Scholar
Yamaguchi, K., K. Nitta, H. Yamamoto, K. Matsuo, M. Machida, M. Murakami, M. Ishihara, S. Nakai, R. Shichi, and A. Yamamoto, The establishment of the Japan Gravity Standardization Net 1996, in Gravity, Geoid and Marine Geodesy, IAG Symposia, edited by J. Segawa, H. Fujimoto, and S. Okubo, 117, 241–248, Springer, 1997.
Article
Google Scholar