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Abstract 

Tephra rings that surround maar craters are typically inferred from field observations to have been emplaced rapidly 
over a time period of days to years and thus monogenetic, which is, however, rarely assessed quantitatively. This 
paper describes a polycyclic origin of the Mamiyadake tephra ring (Japan), comparing the paleomagnetic directions 
obtained from throughout the stratigraphy. The new data show that the paleomagnetic directions change systemati-
cally with stratigraphic height through the sections, which is interpreted to record paleosecular variation (PSV) of the 
geomagnetic field during formation of the tephra ring. The paleomagnetic results, together with using an average 
rate of PSV in Japan, indicate that the Mamiyadake tephra ring was constructed episodically with five major eruptive 
episodes, separated by centuries or longer, over a period of at least 1000 years. The findings demonstrate that detailed 
paleomagnetic characterization can uncover the temporal evolution of tephra rings, providing a useful criterion for 
identifying time breaks, even where field evidence is lacking, and a minimum estimate of the time interval for their 
emplacement. The approach used here may be applicable to volcanoes of any type.
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Graphical Abstract

Introduction
Tephra-ring deposits around maar craters are emplaced 
during repeated explosive phreatomagmatic explosions 
(Lorenz 1973; White and Ross 2011; Valentine et  al. 
2017). They are a few meters to several tens of meters 
thick and typically consist of coarse-grained lapilli tuffs to 
tuff breccias interbedded with thinly stratified to cross-
stratified tuffs to lapilli tuffs (White and Schmincke 1999; 
Graettinger and Valentine 2017; Ort et al. 2018). Prehis-
toric tephra rings are typically inferred to have formed 
over a short time span (days to years) due to lack of geo-
logical evidence of significant time breaks (Easy Chair 
maar, USA, Valentine and Cortés 2013; La Crosa de Sant 
Dalmai maar, Spain, Pedrazzi et  al. 2014; Motukorea 
tephra ring, New Zealand, Agustín-Flores et  al. 2015); 
a few examples show evidence of time gaps as intermit-
tent paleosols, reworked horizons, erosional surfaces, or 
unconformities (Albano maar, Italy, Giaccio et  al. 2007; 
Lake Purrumbete maar, Australia, Jordan et  al. 2013; 
Barombi Mbo maar, Cameroon, Chako Tchamabé et  al. 
2015). However, such field evidence is qualitative in 
nature and, in some cases, cannot be seen due to poor 
exposure.

Paleomagnetic analysis can provide a quantitative 
means of correlating separate deposits or distinguishing 
deposits from different eruptions, as has been applied 
for flood basalts (Mankinen et al. 1985; Coe et al. 2005), 
ash-flow sheets (Fujii et al. 2001; Finn et al. 2016; Knott 
et  al. 2020), lava domes or dome complexes (Hildreth 

et  al. 2014; Wright et  al. 2015; Downs et  al. 2020), lava 
fields (Champion and Donnelly-Nolan 1994; Hagstrum 
and Champion 1994; Pinton et  al. 2018), monogenetic 
volcanoes (Mahgoub et al. 2017; Champion et al. 2018), 
and even for emplacement of intrusions (Konstantinov 
et al. 2014; Giorgis et al. 2019). Paleomagnetic directions 
preserved in the deposits represent the snapshots of pale-
osecular variation (PSV) of the geomagnetic field at the 
time of their deposition. Deposits from a single eruption 
would have indistinguishable directions, while deposits 
from separate eruptions would show variations in pale-
omagnetic directions. Thus, comparing paleomagnetic 
directions through the sequence of tephra rings pro-
vides a time framework for their emplacement. By using 
this approach, I present the first high-resolution tempo-
ral evolution of a tephra ring (Mamiyadake tephra ring, 
Ohachidaira maar-caldera complex), showing its episodic 
construction over a time span of at least 1000 years.

Ohachidaira maar‑caldera complex
Ohachidaira volcano is a Quaternary maar-caldera com-
plex with a ~ 2-km-diameter caldera on its summit, 
located in the central part of the Taisetsu volcano group 
in central Hokkaido, northern Japan (Fig. 1A; Yasuda and 
Suzuki-Kamata 2018; Yasuda et  al. 2020). Early effusive 
and explosive activities at Ohachidaira volcano emplaced 
lava flows and pyroclastic rocks, now exposed in the 
lower half of ~ 100–200 m of the caldera walls, and may 
have constructed a stratocone (Ishikawa 1963; Konoya 
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et  al. 1966). After the cone-building phase ceased, a 
lithic-block-rich ignimbrite was emplaced on the outer 
slopes of the cone, forming a crater(s) (Yasuda et  al. 
2020). The crater(s) was then widened during maar-form-
ing phreatomagmatic eruptions that emplaced the Mami-
yadake tephra ring on the crater rim; the northeastern to 
southeastern parts of the crater may have been further 
collapsed during a final climactic eruption (Yasuda et al. 
2020). The caldera then filled with water, which is now 
drained by a creek that dissects the northeastern caldera 
wall.

Stratigraphy of the Mamiyadake tephra ring
The sequence of the Mamiyadake tephra ring consists of 
scoria- and lithic-rich phreatomagmatic deposits (mas-
sive lapilli tuffs to tuff breccias and stratified to cross-
stratified tuffs to lapilli tuffs) interbedded with welded 
to unconsolidated scoria-fall and ash-fall deposits. On 
the caldera wall, the deposits are as thick as ~ 90 m and 
overlie andesitic to dacitic lava flows (Figs.  1C, 2); out-
side the caldera, they thin rapidly and extend only ~ 1 km 
downslope. Abundant andesite and dacite lava lithic 
blocks in the phreatomagmatic units (up to 4 m in size) 
imply that the shallow part of the conduit was excavated 
by violent explosions. The northern part of the tephra 
ring abuts against the southern slope of an older lava 
dome (Fig.  1B), and the eastern part of it is overlain by 
plinian fall deposits of the climactic eruption (Fig.  1E). 
No direct age determinations have been made for the 
Mamiyadake tephra ring; however, the stratigraphic rela-
tions and the previously reported ages of the dome and 
the climactic deposits suggest that it formed sometime 
between ~ 155  ka and ~ 34  ka (Ishige 2017; Yasuda et  al. 
2020).

Methods
Paleomagnetic directions were determined at 39 sites in 
the Mamiyadake tephra ring (Fig.  1A), of which 8 sites 
were previously measured and reported by Yasuda et al. 
(2020). Sites were chosen to span as much of the stra-
tigraphy of the tephra ring as possible; well-exposed 
stratigraphic sections were preferentially sampled, and 
samples were collected from multiple stratigraphic levels 
within each section (Fig. 1B–E). The data set includes five 

successive sites in the north section (N1–5; N1 is strati-
graphically lowest and N5 is highest), two in the north-
west (NW1–2), nine in the west (W1–9), eight in the 
southwest (SW1–8), five in the south (S1–5), and eight in 
the east (E1–8), as well as two isolated sites (I1–2) each 
southwest and south. Most sites are in the caldera walls, 
except for the south section that is in the wall of the val-
ley cutting through the outer southern slope of the cal-
dera (Fig. 2).

At each site, 6 to 11 hand samples (8 in average) were 
collected over 1 to 25 m of outcrop; samples were taken 
from a bed or beds (up to 3  m thick) of mainly scoria 
fall and subordinately tuff breccia and lapilli tuff, with 
only one site from a sintered tuff. All samples (> 5  cm 
in size) were independently oriented in situ with a mag-
netic compass and then removed from the outcrop using 
a rock hammer. To avoid possible orientation error 
due to strong magnetization of the rock, the deflec-
tion of the compass needle was checked while the com-
pass was moved close to and away from the rock before 
each sampling. Scoria clasts were preferentially sampled 
(94% of all samples) because (1) they occur through-
out the sequence as a major juvenile component and 
(2) preliminary paleomagnetic data (Yasuda et  al. 2015, 
2020) showed that scoria clasts in this study area tended 
to yield interpretable results. Lithic samples (andesite 
and dacite lava blocks and lapilli tuff blocks) were sub-
ordinate (3%), and only one pumice clast was sampled. 
At site NW2, large (> 5 cm) clasts were so rare that sin-
tered bulk-matrix samples were collected instead. Fresh 
samples were preferentially collected to avoid chemical 
alternation to remanence. No tilt correction was applied 
because no field evidence for post-depositional move-
ment of the sampled deposits was observed.

In the laboratory the oriented samples were filled with 
plaster which were then cored and cut into ~ 14–24-mm-
tall, ~ 25-mm-diameter cylindrical specimens for analy-
sis. Remanence was measured on 313 specimens (one 
specimen per sample) using a Natsuhara SMM-85 spin-
ner magnetometer. After measurement of the natural 
remanent magnetization (NRM), all the specimens were 
thermally demagnetized using Natsuhara TDS-1 thermal 
demagnetizers with a residual field of < 10 nT. Specimens 
were heated in 50  °C steps between 100  °C and 500  °C 

(See figure on next page.)
Fig. 1 A Shaded relief map around Ohachidaira volcano, showing distribution of the Mamiyadake tephra ring (yellow). Red dots indicate sites 
sampled for paleomagnetic analysis. Dashed line delineates the caldera rim. Contour interval is 50 m. Shaded relief from Geospatial Information 
Authority of Japan 10-m digital elevation model. Inset map shows location of Ohachidaira volcano (yellow star). B North rim of the Ohachidaira 
caldera. The tephra-ring deposits, overlying the lower slope of an adjacent lava dome, were sampled at 5 successive sites (N1–5; red dots) for 
paleomagnetic analysis. C Southwest wall of the caldera. As much as ~ 90 m of the tephra-ring deposits directly overlie older andesite lavas. 
Paleomagnetic directions here were determined at 8 sites (SW1–8). An angular unconformity occurs between sites SW6–7 and SW8 (upper left). 
Dashed thick white lines represent the inferred base of the tephra ring. D West wall of the valley to the south of the caldera. Five sites (S1–5) were 
sampled for paleomagnetic analysis; the lowermost site (S1) is out of the photo to the lower left. E Upper part of east caldera wall. The tephra-ring 
deposits here is overlain by plinian fall deposits of the 34 ka climactic eruption and was sampled at 8 sites (E1–8)
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and then in 30 °C steps up to 680 °C (mostly up to 560–
620 °C), until the remaining intensity was less than 5% of 
the NRM or until the magnetization became unstable. 
Changes in bulk susceptibility with progressive demag-
netization were monitored with a Bartington MS2 meter.

Results were plotted on orthogonal vector plots 
(Zijderveld 1967) and equal-area projections to evaluate 
the demagnetization behavior (Fig. 3). Principal compo-
nent analysis (Kirschvink 1980) was used to define the 
characteristic remanent magnetization (ChRM) of each 
specimen (see Additional file  1). The magnetic compo-
nents were considered stable where they were defined 
by at least three points (not including the origin) on 
vector plots with a maximum angular deviation (MAD) 
of < 10°. Fisher statistics (Fisher 1953) were used to cal-
culate within-site and episode-mean directions, radius 
of 95% confidence circles (α95), and precision param-
eters (k). Data were analyzed using the MagePlot pro-
grams (Hatakeyama 2018); the original data of Yasuda 
et al. (2020) from the 8 sites (N1, NW2, SW2, SW8, S1, 
S4, I1, I2) were reanalyzed, without additional sampling 
or measurement, following the procedure outlined above.

Results
The NRM intensities for the Mamiyadake samples 
range from 2.1 ×  10–2 to 27  Am−1 (or from 1.7 ×  10–5 to 
1.7 ×  10–2   Am2kg−1; see Additional file  1). Most (77%) 
of the specimens were fully unblocked at temperatures 
between 530 °C and 590 °C (Fig. 3A–D), indicating that 
magnetite is the carrier of the magnetization. Subor-
dinate specimens had higher unblocking temperatures 
with up to 37% (mostly 5%–25%) of the NRM remaining 
at 590 °C and were fully unblocked at 620 °C (Fig. 3E), 
suggesting the presence of minor hematite. Only one 
scoria specimen from site S4 retained more than 20% 
of the NRM at temperatures 590–650 °C and was fully 
unblocked at 680 °C, the Curie temperature of hematite 
(Fig. 3F). The magnetite and hematite components had 
nearly identical directions (Fig. 3E, F).

After the removal, typically by 100–400  °C, of any 
low-blocking temperature magnetizations, 293 out of 
313 specimens showed a stable component that decayed 
univectorially to the origin during demagnetization 
(Fig.  3A–F), the direction of which is consistent within 
each site (see Additional file  1). This high-temperature 

Fig. 2 View from the eastern rim of the Ohachidaira caldera, looking northwestward (A) and westward (B). The sequence of the Mamiyadake 
tephra ring (bounded by white lines) is well exposed on the walls between the west and southwest sections, but is poorly exposed between the 
north and northwest sections and the southwest and south sections. The tops of the northwest and southwest rims each rise ~ 200 m above the 
caldera floor
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orthogonal vector plots, open and solid dots represent projections on the vertical and horizontal planes, respectively. Numbers adjacent to 
data points indicate temperature in °C. A–F Specimens from which the characteristic remanent magnetization (ChRM) was successfully isolated 
during thermal demagnetization. A Specimen 295 (scoria) from site W8, showing a single stable component of magnetization. B–F After a 
low-temperature overprint is removed at 350 °C (B), 100 °C (C, E), or 250 °C (D, F), the ChRM decays linearly to the origin. G Specimen overprinted 
with a strong magnetization that was not removed even at the highest demagnetization step (590 °C). The star represents the mean ChRM direction 
of site W9. H Specimen rejected due to unstable demagnetization behavior even after removal of a low-temperature overprint at about 250 °C
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component was interpreted as the ChRM. Eleven speci-
mens were overprinted with magnetizations that were 
not removed even at the highest demagnetization steps 
(530–620  °C), so they were rejected for further analy-
sis. Their direction during thermal demagnetization 
gradually changed toward the ChRM direction, but the 
remanence was completely removed before isolating the 
ChRM (Fig. 3G). There were also six specimens rejected 
because they were unstable during demagnetization 
(Fig.  3H). Three specimens had resolvable character-
istic directions but with peculiar directions > 30° from 
the average of the samples from that site, and they were 
discarded from site-mean calculations. These divergent 
directions are likely due to misorientation during sam-
pling, post-cooling movement of the sampled clasts when 
deposits were loosely packed, or complete overprinting.

Approximately 40% of the samples measured had a 
well-defined low-temperature remanence component 
that was typically isolated at temperatures below 400 °C 
(see Additional file 1). This component is interpreted to 
be overprint, rather than a primary remanence acquired 
after deposition at temperatures lower than the Curie 
temperature of magnetite. Within-site dispersions in the 
low-temperature component are typically large (α95 > 20°, 
k < 30; Table 1). Although some sites had relatively small 
within-site dispersions in the low-temperature compo-
nent (α95 < 15°, k > 70), such dispersions are larger than 
those for the high-temperature counterpart (ChRM) of 
the same site (Table 1). If the deposits had been emplaced 
at low temperatures, they would have showed smaller 
within-site dispersions in the low-temperature compo-
nent than in their high-temperature counterpart. These 
low-temperature components might be isothermal rema-
nence from lightning strikes, viscous remanence, or ther-
moremanence acquired during reheating by overlying 
deposits.

Although within-site dispersions in ChRM are small 
with α95 values ranging from 1.7° to 6.5° (3.3° in average) 
and k values ranging from ~ 100 to ~ 1100 (~ 400 in aver-
age), declinations (337.2°–21.8°) and inclinations (50.1°–
75.0°) of the mean directions scatter widely (Table 1).

Most sections show vertical changes in site-mean 
ChRM directions (Fig. 4). Four lines of evidence indicate 
that the ChRMs represent the primary thermoremanent 
magnetization acquired when each unit was emplaced 
and cooled and that the directional changes represent 
PSV of the geomagnetic field over time: (1) the ChRMs 
are the stable component carried predominantly by mag-
netite; (2) the ChRM directions are well grouped within 
each site, irrespective of any type of specimens (scoria, 
pumice, lithic, tuff; see Additional file  1); (3) the site-
mean ChRM directions disperse up to 16.3° away from 
the geocentric axial dipole field direction (at latitude 

43.7°N, D = 0°, I = 62.4°), the degree of which is within the 
expected limits of geomagnetic secular variation in Japan 
(Hyodo et  al. 1993; Hatakeyama 2013); (4) very similar 
directional variations recorded in the west and southwest 
sections, as detailed below, indicate that the paleomag-
netic methods employed here gave reproducible results 
and that the variations in paleomagnetic directions are 
realistic.

Paleomagnetic stratigraphy
Tephra-ring deposits may be emplaced during multiple 
eruptive episodes separated by significant time breaks 
(Chako Tchamabé et  al. 2016). An eruptive episode is 
here defined as an eruption that spans a short time period 
over which no significant secular variation occurred. Suc-
cessive units in a section were considered to be erupted 
in the same eruptive episode, if their site-mean directions 
showed no systematic changes and their 95% confidence 
circles overlapped (Mankinen et  al. 1985); the statistics 
of McFadden and Lowes (1981) were used to determine 
whether pairs of neighboring sites in each section or 
multiple sites from different sections share a common 
mean direction at the 95% confidence level. Different sec-
tions were correlated based on paleomagnetic and strati-
graphic relations (but when correlations were ambiguous 
due to limited stratigraphic constraints, they were made 
in such a way as to minimize the number of eruptions).

North section
The north section (Fig.  1B), ~ 50  m thick, consists pre-
dominantly of lithic-rich (dominantly andesite lava 
blocks up to 4  m) coarse tuff breccias. Sampling was 
done at five sites, including the lowermost exposed tuff 
breccia unit (N1) and a scoria-fall unit near the top of 
the section (N5). Paleomagnetic directions of N1–5 
are statistically identical in that all the α95 circles of the 
site means overlap each other (Fig. 4A), and any pair of 
neighboring sites passed the McFadden and Lowes (1981, 
using their Eq. 25) common mean direction test, indicat-
ing that the section was emplaced rapidly enough that no 
significant secular variation was recorded.

Western (Southwest, West, and Northwest) sections
The tephra-ring deposits exposed on the western cal-
dera walls are ~ 50–90  m thick and consist of tuff brec-
cias, stratified to cross-stratified tuffs to lapilli tuffs, and 
scoria-rich falls. The layers are poorly exposed on the 
walls between the north and west sections (Fig.  2A), 
making their stratigraphic relations unclear. The layers 
are traceable along the wall from the southwest section 
to the west section (Fig. 2B), where they become thinner 
and finer grained northward; these two sections show 
parallel changes in paleomagnetic directions with height 
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Table 1 Paleomagnetic data from the Mamiyadake tephra ring

Site High-temperature component (ChRM) Low-temperature component

n N D I k α95 nL D I k α95

(°) (°) (°) (°) (°) (°)

North section

 N5 9 9 355.0 62.9 419.3 2.5 0

 N4 8 8 352.4 63.9 606.4 2.3 1 358.8 41.3

 N3 8 8 352.8 62.1 1096.2 1.7 1 345.1 42.7

 N2 8 8 359.1 61.8 280.9 3.3 0

  N1* 10 11 356.9 63.1 408.6 2.4 4 328.2 61.8 4.2 50.8

Northwest section

  NW2* 7 10 349.2 55.8 204.6 4.2 10 261.3 20.4 1.6 60.2

 NW1 9 9 1.7 70.9 185.1 3.8 8 295.4 64.6 19.1 13.0

West section

 W9 5 8 18.8 56.3 246.4 4.9 6 232.6 68.3 2.0 65.8

 W8 8 8 343.7 57.2 741.4 2.0 1 7.7 58.9

 W7 8 8 345.0 57.5 167.6 4.3 1 261.0 35.4

 W6 7 7 342.0 56.8 233.2 4.0 0

 W5 6 7 342.7 61.8 469.7 3.1 6 227.6 48.0 2.2 60.2

 W4 8 8 15.7 67.0 564.6 2.3 7 340.6 62.2 7.3 23.9

 W3 8 8 14.9 67.3 396.5 2.8 2 356.8 62.5 14.7 70.6

 W2 6 6 17.3 66.6 1070.4 2.0 0

 W1 8 8 352.5 64.2 595.3 2.3 0

Southwest section

  SW8* 5 7 20.1 54.9 1134.1 2.3 5 357.3 44.7 3.0 53.3

 SW7 8 8 343.0 59.7 538.8 2.4 1 359.8 61.1

 SW6 8 8 339.8 59.1 184.2 4.1 1 349.4 65.2

 SW5 7 8 338.3 59.2 460.3 2.8 1 338.7 57.5

 SW4 8 8 10.5 71.0 401.9 2.8 3 350.8 65.6 278.7 7.4

 SW3 8 8 11.1 71.5 186.3 4.1 3 342.6 68.6 195.8 8.8

  SW2* 4 8 14.2 70.8 442.4 4.4 7 279.3 60.1 2.7 45.9

 SW1 8 8 8.4 67.2 367.3 2.9 8 350.0 60.0 149.2 4.5

South section

 S5 8 8 337.2 58.0 407.8 2.7 0

  S4* 8 8 351.4 62.9 288.2 3.3 3 11.1 68.7 130.0 10.9

 S3 5 8 7.7 67.4 408.3 3.8 3 11.6 60.9 229.4 8.2

 S2 8 8 15.5 50.5 252.7 3.5 6 356.2 59.1 74.5 7.8

  S1* 7 8 18.8 50.1 195.7 4.3 3 17.4 62.1 446.0 5.8

East section

 E8 7 7 20.1 75.0 87.8 6.5 2 41.9 64.5 4.8

 E7 7 7 20.7 72.1 516.0 2.7 2 82.0 51.6 41.2 40.0

 E6 7 7 19.2 71.7 400.7 3.0 3 39.9 61.4 11.7 37.9

 E5 8 8 16.6 70.5 308.9 3.2 6 82.3 63.0 8.8 24.0

 E4 8 8 9.7 74.2 218.7 3.8 3 104.5 58.1 18.3 29.7

 E3 7 7 21.8 70.6 398.9 3.0 0

 E2 8 8 15.1 70.5 106.9 5.4 2 25.3 56.8 29.5 47.8

 E1 8 8 3.5 72.8 465.8 2.6 1 85.3 70.4

Isolated sites

  I2* 10 10 19.5 50.1 534.8 2.1 2 7.5 78.8 194.7 18.0

  I1* 8 9 340.6 60.6 137.9 4.7 9 31.5 69.1 4.4 27.7
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Site—site number, n/N—the number of specimens used in calculation of ChRM (characteristic remanent magnetization) site means/the total number of specimens 
measured, nL—the number of specimens from which a low-temperature component was isolated, D/I—mean declination/inclination, and k/α95—precision 
parameter/radius of 95% confidence circle (Fisher 1953). Mean of site means for each eruptive episode (EP1–4, X) are also shown; sites included in each eruptive 
episode are given in parentheses
* Sites that were measured by Yasuda et al. (2020). The original data were reanalyzed in this study. Note that the sites were renamed for convenience; N1 is Ma01 in 
Yasuda et al. (2020), NW2 is Ma02, SW2 is Ma03, SW8 is Ma04, S1 is Ma07, S4 is Ma08, I1 is Ma05, and I2 is Ma06

Table 1 (continued)

Site High-temperature component (ChRM) Low-temperature component

n N D I k α95 nL D I k α95

(°) (°) (°) (°) (°) (°)

Mean of site means

 EP4 (W9, SW8) 19.5 55.6 5554.2  3.4

 EP3 (NW2, W5–8, SW5–7, I1, S5) 342.2 58.6 963.5  1.6

 EP2 (NW1, W2–4, SW1–4, S3, E1–8) 13.4 70.5 646.5  1.4

 EP1 (N1–5, W1) 354.8 63.0 2623.0  1.3

 EPX (I2, S1–2) 17.9 50.2 3362.0  2.1

Fig. 4 Equal-area lower hemisphere projections of site-mean ChRM directions for the Mamiyadake tephra ring. Dots represent site-mean directions 
and ellipses indicate 95% confidence circles (α95). Colors are for clarity only. A The north (green, N1–5) and east (yellow, E1–8) sections. B The west 
(blue, W1–9) and southwest (gray, SW1–8) sections. Site-mean α95 ellipses for the north section are silhouetted. C The northwest section (purple, 
NW1–2). Site-mean α95 ellipses for the west and southwest sections are silhouetted. D The south section (red, S1–5) and two isolated sites (open, 
I1–2). Site-mean α95 ellipses for all the other sections are silhouetted
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(Fig. 4B). The paleomagnetic data demonstrate that there 
are four major eruptive episodes (1–4) recorded in these 
sections, each corresponding to a cluster of well-grouped 
paleomagnetic directions with their α95 circles mostly 
overlapping each other (Fig.  4B). Deposits of eruptive 
episode 1 include the lowermost exposed tuff breccias 
(W1) in the west section. The tuff breccias consist of 
coarse andesite lava blocks (up to 2.7 m) and scoria lapilli, 
very similar in appearance and composition to those in 
the north section, and paleomagnetic directions of W1 
and N1–5 are statistically indistinguishable (Fig. 4B), sug-
gesting that they were erupted during the same eruptive 
episode.

Deposits of eruptive episode 2 include three sites 
in the west section (W2–4) and four in the southwest 
(SW1–4). They yield very similar paleomagnetic direc-
tions with their α95 circles nearly overlapping each other, 
which differ significantly from those of eruptive episode 
1 (W2–4, SW1–4 vs. N1–5, W1; Fig.  4B). Deposits of 
eruptive episode 3 include four sites in the west section 
(W5–8) and three in the southwest (SW5–7), which yield 
north-northwest paleomagnetic directions (Fig.  4B). 
Although W5 exhibits a slightly deeper inclination than 
W6–8 (Table  1) and the McFadden and Lowes (1981, 
using their Eq. 25) common mean direction test for W5 
and W6 yields negative, deposits of W5–8 are inferred 
to have been emplaced during the same eruptive epi-
sode because their α95 circles partly overlap each other. 
These eruptive episode 3 directions are statistically indis-
tinguishable from that of an independent site (I1) on the 
foot of the southwest inner wall (Fig. 4D), suggesting coe-
val emplacement. Eruptive episode 4 is recorded in the 
uppermost sites in the west (W9) and southwest (SW8) 
sections with statistically indistinguishable north-north-
east directions (Fig. 4B).

The tephra-ring deposits in the northwest section is 
probably up to ~ 50 m thick, of which the upper ~ 20 m is 
exposed and was sampled at two sites, one (NW2) from a 
sintered tuff within the topmost unit on the rim and the 
other (NW1) from a scoria-fall unit below. The vertical 
change in paleomagnetic directions between NW1 and 
NW2 is consistent with that between eruptive episodes 
2 (W2–4, SW1–4) and 3 (W5–8, SW5–7), implying their 
correlation (Fig. 4C).

South section
Five sites (S1–5) were sampled from ~ 50 m of the tephra-
ring deposits at the head of the valley to the south of 
the caldera (Fig.  1D). They include scoria-fall units at 
the base (S1) and in the upper parts (S4–5) of the sec-
tion, and tuff breccia (S2) and lapilli tuff (S3) units in the 
middle of the section. Owing to talus cover, visual strati-
graphic correlation cannot be made between the south 

and southwest sections (Fig.  2B). Paleomagnetically, S3 
and S5 are very similar to the sites of eruptive episodes 
2 (e.g., W2–4, SW1–4) and 3 (e.g., W5–8, SW5–7), 
respectively, suggesting correlation between the sections 
(Fig. 4D). The direction of S4 is similar to those for erup-
tive episode 3 but statistically distinguishable from that 
of S5 and falls between those of S3 and S5, which possibly 
suggest a minor eruption that occurred between eruptive 
episodes 2 and 3; alternatively, the S4 direction could cor-
relate with those of eruptive episode 1 (N1–5, W1), but 
this correlation seems unlikely. The deposits of eruptive 
episode 1 in the north and west sections are character-
ized by abundant lithic-rich tuff breccia beds, but the S4 
and nearby units are predominantly scoria- or pumice-
lapilli fall layers with minor thinly stratified lapilli tuff 
beds (realizing that different types of deposits could have 
been distributed simultaneously in different directions 
from the vent area).

The lowest two sites, S1–2, have directions that are 
nearly identical to that of an independent site (I2) in the 
south caldera wall (Fig. 4D) where samples were collected 
from a scoria-fall unit near the base. These lower parts 
of the southern tephra-ring deposits likely record an 
eruptive episode (informally called eruptive episode X) 
that is not represented in the data of the other sections. 
The directions of these sites (S1–2, I2) partly overlap 
with those of the sites of eruptive episode 4 (W9, SW8; 
Fig.  4D), but their correlation seems unlikely since the 
upper sites in the south section (S3 and S5) may corre-
spond to eruptive episodes 2 and 3. Eruptive episode X 
is probably preceded eruptive episode 2, but the tem-
poral relationship between eruptive episodes X and 1 is 
unclear.

East section
The east section, at least 50 m thick, was sampled at eight 
sites (E1–8; Fig.  1E), including the lowermost exposed 
unit of ~ 15-m-thick stratified tuff breccias (E1–2) and the 
uppermost exposed scoria-fall deposits (E8). All the units 
sampled yield virtually identical paleomagnetic direc-
tions with their α95 circles mostly overlapping each other 
(Fig.  4A), suggesting they were emplaced within a brief 
time interval. Although the pair of sites E3 and E4 failed 
the McFadden and Lowes (1981, using their Eq. 25) com-
mon mean direction test, the site means for E1–8 show 
no systematic variations in direction. The discontinuity of 
outcrops prevents field correlation between the east and 
the other sections, but paleomagnetically the east section 
is statistically indistinguishable from most of the sites of 
eruptive episode 2 (e.g., W2–4, SW1–4; Fig. 4D) suggest-
ing their coeval emplacement.
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Paleomagnetic estimation of eruptive intervals
The time intervals between emplacement of volcanic 
deposits with different paleomagnetic directions can be 
estimated using secular variation rates calculated from 
local paleomagnetic and archaeomagnetic records (McI-
ntosh et al. 1992; Chenet et al. 2008; Jarboe et al. 2008). 
The archaeomagnetic data that cover the last 1600 years 
in Japan (Hatakeyama 2013) indicate an average secular 
variation rate of 6° per century (ranging from 1° to 14°); 
the same average rate has been estimated from data 
obtained from the sedimentary rocks in Japan that span 
500–11,650 yr BP (Hyodo et al. 1993). There are periods 
when the rates are very low (< 2° per century), but they 
typically last a century or less. These data suggest that a 
time break of a century or more can be reflected in the 
deposits by distinguishable paleomagnetic directions.

The Mamiyadake tephra ring records 5 distinct erup-
tive episodes, each corresponding to discrete clusters 
of the site-mean paleomagnetic directions. The angu-
lar distances between episode-mean directions range 
from 10.4° to 20.2°; in total, the field direction must have 
moved at least 65.9° during the eruptions (Fig. 5). Assum-
ing that the geomagnetic field during formation of the 
Mamiyadake tephra ring changed similarly to that during 
the Holocene and using an average variation rate of 6° per 
century, the data suggest that the tephra ring formed over 
a period of at least ~ 1000 years with four major breaks of 
a few hundred years or longer. These duration estimates 
are minimum values because the true paths of the field 

are likely more complex, deviating from a straight line 
between each pair of episode-mean directions (Fig. 5).

The clustering of site means for each eruptive epi-
sode implies that the duration of individual episodes is 
short (probably less than a century; Yasuda et  al. 2020) 
compared to PSV of the geomagnetic field, although 
the site means for eruptive episodes 2 and 3 show rela-
tively large between-site dispersions (episode-mean k 
values for eruptive episodes 2 and 3 are ~ 650 and ~ 950, 
respectively, while those for the other eruptive episodes 
are ~ 2500–5500; Table 1) in that each of these two groups 
failed the McFadden and Lowes (1981, using their Eq. 41) 
common mean direction test. Such between-site disper-
sions for eruptive episodes 2 and 3 may record either (1) 
PSV during a relatively prolonged period of each of these 
episodes, (2) minor post-emplacement deformation of 
sampled deposits that is difficult to identify in the field, 
or (3) involvement of units from different eruptions but 
with similar paleomagnetic directions.

Field evidence for eruptive hiatus
Paleosols and unconformities represent significant time 
breaks in the volcanic stratigraphy (e.g., Lucchi 2019). No 
paleosols, however, are observed within the sequence of 
the Mamiyadake tephra ring, likely due to alpine envi-
ronments above the tree line (~ 1500 m above sea level) 
that are unfavorable for the development of soil as is the 
case for this area today. Three clear angular unconformi-
ties were found in the sequence, one between sites NW1 
and NW2, one between sites W8 and W9, and the other 
between sites SW6–7 and SW8 (Fig. 1C). The first one is 
correlated with the boundary of eruptive episodes 2 and 
3, while the other two are correlated with that of eruptive 
episodes 3 and 4. These unconformities must have devel-
oped during eruptive hiatus due to aeolian erosion.

Time breaks in the Mamiyadake sequence are not 
always accompanied by field evidence. At the south sec-
tion, no clear unconformity or major reworked depos-
its can be observed within the deposits (Fig.  1D). Such 
a field observation alone would suggest a rapid (days to 
years) emplacement of the section; the paleomagnetic 
data, however, demonstrate that there are two (or possi-
bly three) significant breaks of a century or longer. The 
results suggest that there may be time breaks missed in 
the volcanic record, and such breaks are likely to be iden-
tified using paleomagnetic directions. More accurate 
identification of time breaks should lead to more accurate 
estimations of the frequency and magnitude of eruptions, 
thus improving hazard mitigation.

Fig. 5 Equal-area lower hemisphere projection of the mean of 
site means for each eruptive episode (EP1–4, X). Dots represent 
episode-mean directions and ellipses indicate 95% confidence circles 
(α95). Sites included in each eruptive episode are identified in Table 1. 
Arrows indicate the shortest possible paths of paleosecular variation 
during formation of the Mamiyadake tephra ring. Angular distances 
between the mean directions are indicated beside the arrows. 
Eruptive episode X is tentatively placed ahead of eruptive episode 1 
only to make the paths shortest



Page 12 of 14Yasuda  Earth, Planets and Space          (2023) 75:110 

Comparison to other maar tephra rings
Maar tephra rings typically show no field evidence of 
major breaks in activity and are thus considered to be 
monogenetic (Németh and Kereszturi 2015). The episodic 
and long-term (> 1000  years) evolution of the Mami-
yadake tephra ring is unusual but not the only example. 
Freda et al. (2006) revealed by 40Ar/39Ar dating that the 
Albano maar (central Italy) formed during three major 
eruptive episodes at ~ 69, 39, and 36  ka. Even longer 
timespan for formation of the Barombi Mbo maar (Cam-
eroon) was reported, by K–Ar dating, in that it formed 
during three eruptive cycles that span ~ 430,000  years 
(Chako Tchamabé et  al. 2014). These examples clearly 
indicate that a longer-term (> 1000  years) perspective 
should be considered for hazard assessment of such vol-
canoes (Lorenz 2007).

Conclusions
The new paleomagnetic and stratigraphic data indicate 
that the Mamiyadake tephra ring formed episodically 
during five distinct eruptive episodes. Based on the varia-
tions in paleomagnetic directions and the average rate of 
Holocene secular variation in Japan, the tephra ring was 
likely constructed over a period of more than 1000 years. 
This duration is at least three orders of magnitude longer 
than those typically inferred for formation of tephra 
rings (days to years). The use of paleomagnetic direc-
tions is particularly useful in recognizing temporal hia-
tuses within pyroclastic successions, which is important 
in constraining the frequency and volume of explosive 
eruptions.
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