Aben FM, Dekkers MJ, Bakker RR, van Hinsbergen DJJ, Zachariasse WJ, Tate GW, McQuarrie N, Harris R, Duffy B (2014) Untangling inconsistent magnetic polarity records through an integrated rock magnetic analysis: a case study on Neogene sections in East Timor. Geochem Geophys Geosyst 15(6):2531–2554. doi:10.1002/2014GC005294
Article
Google Scholar
Ashi J, Tokuyama H, Taira A (2002) Distribution of methane hydrate BSRs and its implication for the prism growth in the Nankai Trough. Mar Geol 187:177–191
Article
Google Scholar
Aubourg C, Pozzi J-P (2010) Toward a new <250 °C pyrrhotite-magnetite geothermometer for claystones. Earth Planet Sci Lett 294(1–2):47–57
Article
Google Scholar
Chang L, Vassiliev I, van Baak C, Krijgsman W, Dekkers MJ, Roberts AP, Ftiz Gerald JD, van Hoesel A, Winklhofer M (2014) Identification and environmental interpretation of diagenetic and biogenic greigite in sediments: a lesson from the Messinian Black Sea. Geochem Geophys Geosyst 15:3612–3627. doi:10.1002/2014GC005411
Article
Google Scholar
Collett TS (2001) A review of well-log analysis techniques used to assess gas-hydrate bearing reservoirs. In: Paull CK and Dillon WP (eds) Natural gas hydrates: occurrence, distribution and detection. Geophysical Monograph Series 124:189–210. doi:10.1029/GM124p0189
Google Scholar
Day R, Fuller M, Schmidt V (1977) Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys Earth Planet Inter 13:260–267
Article
Google Scholar
Dekkers M, Mattéi JL, Fillion G, Rochette P (1989) Grain-size dependence of the magnetic behavior of pyrrhotite during its low-temperature transition at 34 K. Geophys Res Lett 16(8):855–858
Article
Google Scholar
Expedition 316 Scientists (2009) Expedition 316 Site C0008. In: Kinoshita M, Tobin H, Ashi J, Kimura G, Lallement S, Screaton EJ, Curewitz D, Masago H, Moe KT, and the Expedition 314/315/316 Scientists (eds) Proc IODP, vol 314/315/316. Integrated Ocean Drilling Program Management International, Inc, Washington, DC. doi:10.2204/iodp.proc.314315316.136.2009
Google Scholar
Ginsburg G, Soloviev V, Matveeva T, Andreeva I (2000) Sediment grain size control on gas hydrate presence, sites 994, 995 and 997. Proc Ocean Drill Prog Sci Results 164:237–245
Google Scholar
Guo J, Underwood MB (2012) Data report: clay mineral assemblages from the Nankai Trough accretionary prism and the Kumano Basin, IODP Expeditions 315 and 316, NanTroSEIZE Stage 1. In: Kinoshita M, Tobin H, Ashi J, Kimura G, Lallement S, Screaton EJ, Curewitz D, Masago H, Moe KT, and the Expedition 314/315/316 Scientists (eds) Proc IODP, vol 314/315/316. Integrated Ocean Drilling Program Management International, Inc, Washington, DC. doi:10.2204/iodp.proc.314315316.202.2012
Google Scholar
Harrison R, Feinberg J (2008) FORCInel: an improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochem Geophys Geosyst. 9. doi: 10.129/2008GC001987
Hesse R (2003) Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface What have we learned in the past decade? Earth-Sci Rev 61:149–179
Article
Google Scholar
Horng CS, Torii M, Shea KS, Kao SJ (1998) Inconsistent magnetic polarities between greigite- and pyrrhotite/magnetite-bearing marine sediments from the Tsailiao-chi section, southwestern Taiwan. Earth Planet Sci Lett 164:467–481
Article
Google Scholar
Housen BA, Musgrave RJ (1996) Rock-magnetic signature of gas hydrates in accretionary prisms sediments. Earth Planet Sci Lett 139:509–519
Article
Google Scholar
Jin YK, Lee MW, Collett TS (2002) Relationship of gas hydrate concentration to porosity and reflection amplitude in a research well, McKenzie Delta, Canada. Mar Petrol Geol 19:407–415
Article
Google Scholar
Kao SJ, Horng CS, Roberts AP, Liu KL (2004) Carbon-sulfur-iron relationships in sedimentary rocks from southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation. Chem Geol 203:153–168
Article
Google Scholar
Kars M, Kodama K (2014) Occurrence of iron sulfides-rich layers and gas hydrates horizons in Site C0008, Nankai Trough. AOGS Meeting 2014, Sapporo (Japan), July 28th-August 1st, SE04-A018
Google Scholar
Kars M, Kodama K (2015) Authigenesis of magnetic minerals in gas hydrate-bearing sediments in the Nankai Trough, offshore Japan. Geochem Geophys Geosyst. 16. doi:10.1002/2014GC005614.
Kars M, Aubourg C, Pozzi JP (2011) Low temperature magnetic behaviour near 35 K in unmetamorphosed claystones. Geophys J Int 186:1029–1035
Article
Google Scholar
Kennett JP, Cannariato KG, Hendy IL, Behl RJ (2003) Methane hydrates in quaternary climate change: the clathrate gun hypothesis. American Geophysical Union 54:216
Google Scholar
Kimura G, Moore GF, Strasser M, Screaton E, Curewitz D, Streiff C, Tobin H (2011) Spatial and temporal evolution of the megasplay fault in the Nankai Trough. Geochem Geophys Geosyst 12(3):Q0A008. doi:10.1029/2010GC003335
Article
Google Scholar
Kinoshita M, Tobin H, Ashi J, Kimura G, Lallement S, Screaton EJ, Curewitz D, Masago H, Moe KT, the Expedition 314/315/316 Scientists (2009) Proc. IODP, 314/315/316. Integrated Ocean Drilling Program Management International, Inc, Washington, DC. doi:10.2204/iodp.proc.314315316.2009
Google Scholar
Kinoshita M, Moore GF, Kido YN (2011) Heat flow estimated from BSR and IODP borehole data: Implication of recent uplift and erosion of the imbricate thrust zone in the Nankai Trough off Kumano. Geochem Geophys Geosyst 12(9):Q0AD18. doi:10.1029/2011GC003609
Article
Google Scholar
Kinoshita M, Fukase H, Goto S, Toki T (2015) In situ thermal excursions detected in the Nankai Trough forearc slope sediment at IODP NanTroSEIZE Site C0008. Earth Planets and Space 67:16. doi:10.1186/s40623-014-0171-1
Article
Google Scholar
Kopf A, Strasser M, Monsees N, Underwood M, Guo J (2011) Data report: particle size analysis of sediments recovered during IODP Expeditions 315 and 316, Sites C0001-C0008, Nankai Trough forearc, off Japan. In: Kinoshita M, Tobin H, Ashi J, Kimura G, Lallemant S, Screaton EJ, Curewitz D, Masago H, Moe KT, the Expedition 314/315/316 Scientists (eds) Proc. IODP, 314/315/316. Integrated Ocean Drilling Program Management International, Inc, Washington, DC. doi:10.2204/iodp.proc.314315316.207.2011
Google Scholar
Kvenvolden KA (1993) Gas hydrates—geological perspective and global change. Rev Geophys 31(2):173–187
Article
Google Scholar
Larrasoaña JC, Gràcia E, Garcés M, Musgrave RJ, Piñero E, Martínez-Ruiz F, Vega ME (2006) Rock magnetic identification of magnetic iron sulfides and its bearing on the occurrence of gas hydrates, ODP Leg 204 (hydrate ridge). In: Tréhu AM, Bohrmann G, Torres ME, Colwell FS (eds) Proc. ODP, Sci. Results 204., pp 1–33
Google Scholar
Larrasoaña JC, Roberts AP, Musgrave RJ, Gràcia E, Piñero E, Vega M, Martinez-Ruiz F (2007) Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems. Earth Planet Sci Lett 261:350–366
Article
Google Scholar
Moskowitz B, Frenkel RB, Bazylinski DA (1993) Rock magnetic criteria for the detection of biogenic magnetite. Earth Planet Sci Lett 120:283–300
Article
Google Scholar
Musgrave RJ, Bangs NL, Larrasoaña JC, Gràcia E, Hollamby JA, Vega ME (2006) Rise of the base of the gas hydrate zone since the last glacial recorded by rock magnetism. Geology 34(2):117–120. doi:10.1130/G22008.1
Article
Google Scholar
Muxworthy AR, McClelland E (2000) Review of the low-temperature magnetic properties of magnetite from a rock magnetic perspective. Geophys J Inter 140:101–114
Article
Google Scholar
Özdemir O, Dunlop D, Moskowitz B (2002) Changes in remanence, coercivity and domain state at low-temperature in magnetite. Earth Planet Sci Lett 194:343–358
Article
Google Scholar
Passier HF, Dekkers MJ (2002) Iron oxide formation in the active oxidation front above sapropel S1 in the eastern Mediterranean Sea as derived from low-temperature magnetism. Geophys J Int 150:230–240
Article
Google Scholar
Riedinger N, Brunner B (2014) Data report: concentration and sulfur isotope composition of iron monosulfide and pyrite from sediments collected during IODP Expedition 316. In: Kinoshita M, Tobin H, Ashi J, Kimura G, Lallemant S, Screaton EJ, Curewitz D, Masago H, Moe KT (eds) the Expedition 314/315/316 Scientists, Proc. IODP, 314/315/316. Integrated Ocean Drilling Program Management International, Inc, Washington, DC. doi:10.2204/iodp.proc.314315316.223.2014
Google Scholar
Roberts AP (1995) Magnetic properties of sedimentary greigite (Fe3S4). Earth Planet Sci Lett 134:227–236
Article
Google Scholar
Roberts AP, Pike CR, Verosub KL (2000) First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. J Geophys Res 105(B12):28,461–28,475
Article
Google Scholar
Roberts AP, Liu Q, Rowan CJ, Chang L, Carvallo C, Torrent J, Horng CS (2006) Characterization of hematite (α-Fe2O3), goethite (α-FeOOH), greigite (Fe3S4), and pyrrhotite (Fe7S8) using first-order reversal curve diagrams. J Geophys Res 111:B12S35. doi:10.1029/2006JB004715
Google Scholar
Roberts AP, Chang L, Rowan CJ, Horng CS, Florindo F (2011) Magnetic properties of sedimentary greigite (Fe3S4): an update. Rev Geophys 49:RG1002. doi:10.1029/2010RG000336
Article
Google Scholar
Roberts AP, Heslop D, Zhao X, Pike CR (2014) Understanding fine magnetic particle systems through use of first-order reversal curve diagrams. Rev Geophys 52:557–602. doi:10.1002/2014RG000462
Article
Google Scholar
Rochette P, Fillion G, Mattéi JL, Dekkers MJ (1990) Magnetic transition at 30–34 Kelvin in pyrrhotite: insight into a widespread occurrence of this mineral in rocks. Earth Planet Sci Lett 98:319–328
Article
Google Scholar
Shipboard Scientific Party (1994) Sites 889 and 890. In: Westbrook GK, Carson B, Musgrave RJ et al (eds) Proceedings of the ocean drilling program, initial reports 146, part 1. Ocean Drilling Program, College Station, TX, pp 127–239
Google Scholar
Strasser M, Moore GF, Kimura G, Kopf AJ, Underwood MB, Guo J, Screaton EJ (2011) Slumping and mass transport deposition in the Nankai fore arc: evidence from IODP drilling and 3-D reflection seismic data. Geochem Geophys Geosyst 12(5):Q0AD13. doi:10.1029/2010GC003431
Article
Google Scholar
Toki T, Uehara Y, Kinjo K, Ijiri A, Tsunogai U, Tomaru H, Ashi J (2012) Methane production and accumulation in the Nankai accretionary prism: results from IODP Expeditions 315 and 316. Geochem J 46:89–106
Article
Google Scholar
Underwood MB, Steurer JF (2003) Composition and sources of clay from the trench slope and shallow accretionary prism of Nankai Trough. In: Mikada H, Moore GF, Taira A, Becker K, Moore JC, Klaus A (eds) Proc. ODP, Sct. Results, 190/196., pp 1–28
Google Scholar
Wehland F, Stancu A, Rochette P, Dekkers MJ, Appel E (2005) Experimental evaluation of magnetic interaction in pyrrhotite bearing samples. Phys Earth Planet Inter 153:181–190
Article
Google Scholar
Wolfers P, Fillion G, Ouladdiaf B, Ballou R, Rochette P (2011) The pyrrhotite 32 K magnetic transition. Solid State Phenom 170:174–179
Article
Google Scholar
Yamano M, Kawada Y, Hamamoto H (2014) Heat flow survey in the vicinity of the branches of the megasplay fault in the Nankai accretionary prism. Earth Planets Space 66:126. doi:10.1186/1880-5981-66-126
Article
Google Scholar
Zhao X, Kitamura Y (2011) Data report: magnetic property studies of sediments and rocks from IODP Expedition 316. In: Kinoshita M, Tobin H, Ashi J, Kimura G, Lallemant S, Screaton EJ, Curewitz D, Masago H, Moe KT, the Expedition 314/315/316 Scientists (eds) Proc. IODP, 314/315/316. Integrated Ocean Drilling Program Management International, Inc, Washington, DC. doi:10.2204/iodp.proc.314315316.215.2011
Google Scholar