Biggin AJ, Strik GH, Langereis CG (2009) The intensity of the geomagnetic field in the late-Archaean: new measurements and an analysis of the updated IAGA palaeointensity database. Earth Planets Space 61(1):9–22. https://doi.org/10.1186/BF03352881
Article
Google Scholar
Biggin AJ, Steinberger B, Aubert J, Suttie N, Holme R, Torsvik TH, van der Merr DG, Van Hinsbergen DJJ (2012) Possible links between long-term geomagnetic variations and whole-mantle convection processes. Nat Geosci 5(8):526–533. https://doi.org/10.1038/ngeo1521
Article
Google Scholar
Carter-Stiglitz B, Moskowitz B, Jackson M (2001) Unmixing magnetic assemblages and the magnetic behavior of bimodal mixtures. J Geophys Res Solid Earth 106(B11):26397–26411. https://doi.org/10.1029/2001JB000417
Article
Google Scholar
Carter-Stiglitz B, Jackson M, Moskowitz B (2002) Low-temperature remanence in stable single domain magnetite. Geophys Res Lett 29(7):33-1. https://doi.org/10.1029/2001GL014197
Article
Google Scholar
Channell JET, McCabe C (1994) Comparison of magnetic hysteresis parameters of unremagnetized and remagnetized limestones. J Geophys Res Solid Earth 99(B3):4613–4623. https://doi.org/10.1029/93JB02578
Article
Google Scholar
Christensen UR, Aubert J (2006) Scaling properties of convection driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys J Int 166:97–114. https://doi.org/10.1111/j.1365-246X.2006.03009.x
Article
Google Scholar
Coe RS (1967) Determination of paleo-intensities of the Earth’s magnetic field with emphasis on mechanisms which could cause non-ideal behaviour in Thellier’s method. J Geomagn Geoelectr 19:157–179
Article
Google Scholar
Cottrell RD, Tarduno JA (1999) Geomagnetic paleointensity derived from single plagioclase crystals. Earth Planet Sci Lett 169(1):1–5. https://doi.org/10.1016/S0012-821X(99)00068-0
Article
Google Scholar
Cottrell RD, Tarduno JA, Roberts J (2008) The Kiaman Reversed Polarity Superchron at Kiama: toward a field strength estimate based on single silicate crystals. Phys Earth Planet Inter 169(1):49–58. https://doi.org/10.1016/j.pepi.2008.07.041
Article
Google Scholar
Courtillot V, Olson P (2007) Mantle plumes link magnetic superchrons to Phanerozoic mass depletion events. Earth Planet Sci Lett 260(3):495–504. https://doi.org/10.1016/j.epsl.2007.06.003
Article
Google Scholar
Day R, Fuller M, Schmidt VA (1977) Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys Earth Planet Int 13(4):260–267. https://doi.org/10.1016/0031-9201(77)90108-X
Article
Google Scholar
Dunlop DJ, Özdemir Ö (1997) Rock magnetism—fundamentals and frontiers. Cambridge University Press, Cambridge
Book
Google Scholar
Feinberg JM, Scott GR, Renne PR, Wenk HR (2005) Exsolved magnetite inclusions in silicates: features determining their remanence behavior. Geology 33(6):513–516. https://doi.org/10.1130/G21290.1
Article
Google Scholar
Fu RR, Weiss BP, Lima EA, Kehayias P, Araujo JFDF, Glenn DR, Gelb J, Einsle JF, Bauer AM, Harrison RJ, Ali GAH, Walsworth RL (2017) Evaluating the paleomagnetic potential of single zircon crystals using the Bishop Tuff. Earth Planet Sci Lett 458:1–13. https://doi.org/10.1016/j.epsl.2016.09.038
Article
Google Scholar
Glatzmaier GA, Coe RS, Hongre L, Roberts PH (1999) The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature 401(6756):885–890. https://doi.org/10.1038/44776
Article
Google Scholar
Halgedahl SL, Day R, Fuller M (1980) The effect of cooling rate on the intensity of weak-field TRM in single-domain magnetite. J Geophys Res Solid Earth 85(B7):3690–3698. https://doi.org/10.1029/JB085iB07p03690
Article
Google Scholar
Heider F, Dunlop DJ, Soffel HC (1992) Low-temperature and alternating field demagnetization of saturation remanence and thermoremanence in magnetite grains (0.037 μm to 5 mm). J Geophys Res Solid Earth 97(B6):9371–9381. https://doi.org/10.1029/91jb03097
Article
Google Scholar
Jelinek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79(3–4):T63–T67. https://doi.org/10.1016/0040-1951(81)90110-4
Article
Google Scholar
Kosterov A (2003) Low-temperature magnetization and AC susceptibility of magnetite: effect of thermomagnetic history. Geophys J Int 154(1):58–71. https://doi.org/10.1046/j.1365-246X.2003.01938.x
Article
Google Scholar
Kutzner C, Christensen U (2002) From stable dipolar towards reversing numerical dynamos. Phys Earth Planet Int 121:29–45. https://doi.org/10.1016/S0031-9201(02)00016-X
Article
Google Scholar
Larson RL, Olson P (1991) Mantle plumes control magnetic reversal frequency. Earth Planet Sci Lett 107(3–4):437–447. https://doi.org/10.1016/0012-821X(91)90091-U
Article
Google Scholar
Mochizuki N, Tsunakawa H, Oishi Y, Wakai S, Wakabayashi KI, Yamamoto Y (2004) Palaeointensity study of the Oshima 1986 lava in Japan: implications for the reliability of the Thellier and LTD-DHT Shaw methods. Phys Earth Planet Inter 146(3):395–416. https://doi.org/10.1016/j.pepi.2004.02.007
Article
Google Scholar
Moskowitz BM, Frankel RB, Bazylinski DA (1993) Rock magnetic criteria for the detection of biogenic magnetite. Earth Planet Sci Lett 120(3–4):283–300. https://doi.org/10.1016/0012-821X(93)90245-5
Article
Google Scholar
Moskowitz BM, Jackson M, Kissel C (1998) Low-temperature magnetic behavior of titanomagnetites. Earth Planet Sci Lett 157:141–149. https://doi.org/10.1016/S0012-821X(98)00033-8
Article
Google Scholar
Muxworthy AR, Evans ME (2012) Micromagnetics and magnetomineralogy of ultrafine magnetite inclusions in the Modipe Gabbro. Geochem Geophys Geosyst 14(4):921–928. https://doi.org/10.1029/2012GC004445
Article
Google Scholar
Olson P, Christensen UR (2006) Dipole moment scaling for convection-driven planetary dynamos. Earth Planet Sci Lett 250:561–571. https://doi.org/10.1016/j.epsl.2006.08.008
Article
Google Scholar
Olson PL, Coe RS, Driscoll PE, Glatzmaier GA, Roberts PH (2010) Geodynamo reversal frequency and heterogeneous core–mantle boundary heat flow. Phys Earth Planet Int 180(1–2):66–79. https://doi.org/10.1016/j.pepi.2010.02.010
Article
Google Scholar
Özdemir Ö, Dunlop DJ, Moskowitz BM (1993) The effect of oxidation on the Verwey transition in magnetite. Geophys Res Lett 20(16):1671–1674. https://doi.org/10.1029/93GL01483
Article
Google Scholar
Parry LG (1982) Magnetization of immobilized particle dispersions with two distinct particle sizes. Phys Earth Planet Int 28(3):230–241. https://doi.org/10.1016/0031-9201(82)90004-8
Article
Google Scholar
Paterson GA (2013) The effects of anisotropic and non-linear thermoremanent magnetizations on Thellier-type paleointensity data. Geophys J Int 193(2):694–710. https://doi.org/10.1093/gji/ggt033
Article
Google Scholar
Sato M, Yamamoto S, Yamamoto Y, Okada Y, Ohno M, Tsunakawa H, Maruyama S (2015) Rock-magnetic properties of single zircon crystals sampled from the Tanzawa tonalitic pluton, central Japan. Earth Planets Space 67(1):150. https://doi.org/10.1186/s40623-015-0317-9
Article
Google Scholar
Selkin PA, Gee JS, Tauxe L, Meurer WP, Newell AJ (2000) The effect of remanence anisotropy on paleointensity estimates: a case study from the Archean Stillwater Complex. Earth Planet Sci Lett 183(3):403–416. https://doi.org/10.1016/S0012-821X(00)00292-2
Article
Google Scholar
Selkin PA, Gee JS, Tauxe L (2007) Nonlinear thermoremanence acquisition and implications for paleointensity data. Earth Planet Sci Lett 256(1):81–89. https://doi.org/10.1016/j.epsl.2007.01.017
Article
Google Scholar
Selkin PA, Gee JS, Meurer WP, Hemming SR (2008) Paleointensity record from the 2.7 Ga Stillwater Complex, Montana. Geochem Geophys Geosyst. https://doi.org/10.1029/2008gc001950
Article
Google Scholar
Shcherbakova VV, Bakhmutov VG, Shcherbakov VP, Zhidkov GV, Shpyra VV (2012) Palaeointensity and palaeomagnetic study of Cretaceous and Palaeocene rocks from Western Antarctica. Geophys J Int 189(1):204–228. https://doi.org/10.1111/j.1365-246X.2012.05357.x
Article
Google Scholar
Stacey FD, Banerjee SK (1974) The physical principles of rock magnetism. Elsevier, New York
Google Scholar
Takahashi F, Tsunakawa H, Matsushima M, Mochizuki N, Honkura Y (2008) Effects of thermally heterogeneous structure in the lowermost mantle on the geomagnetic field strength. Earth Planet Sci Lett 272(3):738–746. https://doi.org/10.1016/j.epsl.2008.06.017
Article
Google Scholar
Tanaka H, Kono M (2002) Paleointensities from a Cretaceous basalt platform in Inner Mongolia, northeastern China. Phys Earth Planet Int 133(1):147–157. https://doi.org/10.1016/S0031-9201(02)00091-2
Article
Google Scholar
Tarduno JA, Cottrell RD, Smirnov AV (2001) High geomagnetic intensity during the mid-Cretaceous from Thellier analyses of single plagioclase crystals. Science 291(5509):1779–1783. https://doi.org/10.1126/science.1057519
Article
Google Scholar
Tarduno JA, Cottrell RD, Smirnov AV (2002) The Cretaceous superchron geodynamo: observations near the tangent cylinder. Proc Natl Acad Sci 99:14020–14025. https://doi.org/10.1073/pnas.222373499
Article
Google Scholar
Tarduno JA, Cottrell RD, Smirnov AV (2006) The paleomagnetism of single silicate crystals: recording geomagnetic field strength during mixed polarity intervals, superchrons, and inner core growth. Rev Geophys. https://doi.org/10.1029/2005rg000189
Article
Google Scholar
Tarduno JA, Cottrell RD, Watkeys MK, Bauch D (2007) Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals. Nature 446(7136):657–660. https://doi.org/10.1038/nature05667
Article
Google Scholar
Tarduno JA, Cottrell RD, Watkeys MK, Hofmann A, Doubrovine PV, Mamajek EE, Liu D, Sibeck DG, Neukirch LP, Usui Y (2010) Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science 327(5970):1238–1240. https://doi.org/10.1126/science.1183445
Article
Google Scholar
Tarduno JA, Blackman EG, Mamajek EE (2014) Detecting the oldest geodynamo and attendant shielding from the solar wind: Implications for habitability. Phys Earth Planet Int 233:68–87. https://doi.org/10.1016/j.pepi.2014.05.007
Article
Google Scholar
Tarduno JA, Cottrell RD, Davis WJ, Nimmo F, Bono RK (2015) A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science 349(6247):521–524. https://doi.org/10.1126/science.aaa9114
Article
Google Scholar
Tauxe L (2006) Long-term trends in paleointensity: the contribution of DSDP/ODP submarine basaltic glass collections. Phys Earth Planet Inter 156(3):223–241. https://doi.org/10.1016/j.pepi.2005.03.022
Article
Google Scholar
Thellier E, Thellier O (1959) Sur I’intensite du champ magnetique terrestre dans le passe historique et geologique. Ann Geophys 15:285–376
Google Scholar
Tsunakawa H, Shaw J (1994) The Shaw method of palaeointensity determinations and its application to recent volcanic rocks. Geophys J Int 118(3):781–787. https://doi.org/10.1111/j.1365-246X.1994.tb03999.x
Article
Google Scholar
Tsunakawa H, Wakabayashi KI, Mochizuki N, Yamamoto Y, Ishizaka K, Hirata T, Takahashi F, Seita K (2009) Paleointensity study of the middle Cretaceous Iritono granite in northeast Japan: implication for high field intensity of the Cretaceous normal superchron. Phys Earth Planet Int 176(3):235–242. https://doi.org/10.1016/j.pepi.2009.07.001
Article
Google Scholar
Usui Y (2013) Paleointensity estimates from oceanic gabbros: effects of hydrothermal alteration and cooling rate. Earth Planets Space 65(9):985–996. https://doi.org/10.5047/eps.2013.03.015
Article
Google Scholar
Usui Y, Nakamura N (2009) Nonlinear thermoremanence corrections for Thellier paleointensity experiments on single plagioclase crystals with exsolved magnetites: a case study for the Cretaceous Normal Superchron. Earth Planets Space 61(12):1327–1337. https://doi.org/10.1186/BF03352985
Article
Google Scholar
Usui Y, Shibuya T, Sawaki Y, Komiya T (2015) Rock magnetism of tiny exsolved magnetite in plagioclase from a Paleoarchean granitoid in the Pilbara craton. Geochem Geophys Geosyst 16(1):112–125. https://doi.org/10.1002/2014GC005508
Article
Google Scholar
Wakabayashi KI, Tsunakawa H, Mochizuki N, Yamamoto Y, Takigami Y (2006) Paleomagnetism of the middle Cretaceous Iritono granite in the Abukuma region, northeast Japan. Tectonophysics 421(1):161–171. https://doi.org/10.1016/j.tecto.2006.04.013
Article
Google Scholar
Weiss BP, Maloof AC, Tailby N, Ramezani J, Fu RR, Hanus V, Trail D, Watson EB, Harrison TM, Bowring SA, Kirschvink JL, Swanson-Hysell NL, Coe RS (2015) Pervasive remagnetization of detrital zircon host rocks in the Jack Hills, Western Australia and implications for records of the early geodynamo. Earth Planet Sci Lett 430:115–128. https://doi.org/10.1016/j.epsl.2015.07.067
Article
Google Scholar
Wenk HR, Chen K, Smith R (2011) Morphology and microstructure of magnetite and ilmenite inclusions in plagioclase from Adirondack anorthositic gneiss. Am Min 96(8–9):1316–1324. https://doi.org/10.2138/am.2011.3760
Article
Google Scholar
Tarduno JA, Cottrell RD (2005) Dipole strength and variation of the time-averaged reversing and nonreversing geodynamo based on Thellier analyses of single plagioclase crystals. J Geophys Res Solid Earth. https://doi.org/10.1029/2005jb003970
Article
Google Scholar
Yamamoto Y, Tsunakawa H (2005) Geomagnetic field intensity during the last 5 Myr: lTD-DHT Shaw palaeointensities from volcanic rocks of the Society Islands, French Polynesia. Geophys J Int 162(1):79–114. https://doi.org/10.1111/j.1365-246X.2005.02651.x
Article
Google Scholar
Yamamoto Y, Tsunakawa H, Shibuya H (2003) Palaeointensity study of the Hawaiian 1960 lava: implications for possible causes of erroneously high intensities. Geophys J Int 153(1):263–276. https://doi.org/10.1046/j.1365-246X.2003.01909.x
Article
Google Scholar
Yamamoto Y, Torii M, Natsuhara N (2015) Archeointensity study on baked clay samples taken from the reconstructed ancient kiln: implication for validity of the Tsunakawa–Shaw paleointensity method. Earth Planets Space 67(1):63. https://doi.org/10.1186/s40623-015-0229-8
Article
Google Scholar
Yu Y (2010) Paleointensity determination using anhysteretic remanence and saturation isothermal remanence. Geochem Geophys Geosyst. https://doi.org/10.1029/2009gc002804
Article
Google Scholar
Yu Y (2011) Importance of cooling rate dependence of thermoremanence in paleointensity determination. J Geophys Res Solid Earth. https://doi.org/10.1029/2011jb008388
Article
Google Scholar
Yu Y, Tauxe L, Genevey A (2004) Toward an optimal geomagnetic field intensity determination technique. Geochem Geophys Geosyst. https://doi.org/10.1029/2003gc000630
Article
Google Scholar
Zhang N, Zhong S (2011) Heat fluxes at the Earth’s surface and core–mantle boundary since Pangea formation and their implications for the geomagnetic superchrons. Earth Planet Sci Lett 306(3–4):205–216. https://doi.org/10.1016/j.epsl.2011.04.001
Article
Google Scholar