Acuña MH, Connerney JEP, Ness NF, Lin RP, Mitchell D, Carlson CW, McFadden J, Anderson KA, Rème H, Mazelle C, Vignes D, Wasilewski P, Cloutier P (1999) Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science 284:790–793. https://doi.org/10.1126/science.284.5415.790
Article
Google Scholar
Andrews DJ, Edberg NJT, Eriksson AI, Gurnett DA, Morgan D, Němec F, Opgenoorth HJ (2015) Control of the topside martian ionosphere by crustal magnetic fields. J Geophys Res Space Phys 120(4):3042–3058. https://doi.org/10.1002/2014JA020703
Article
Google Scholar
Azpilicueta F, Brunini C, Radicella SM (2011) Semi-annual anomaly and annual asymmetry on TOPEX TEC during a full solar cycle. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for Planet Earth, vol 136, Springer, Berlin Heidelberg chap 96, pp 769–774. doi: https://doi.org/10.1007/978-3-642-20338-1_96
Benna M, Mahaffy PR, Grebowsky JM, Fox JL, Yelle RV, Jakosky BM (2015) First measurements of composition and dynamics of the martian ionosphere by maven’s neutral gas and ion mass spectrometer. Geophys Res Lett 42(21):8958–8965. https://doi.org/10.1002/2015GL066146
Article
Google Scholar
Bergeot N, Witasse O, Le Maistre S, Blelly PL, Kofman W, Peter K, Dehant V, Chevalier JM (2019) Momo: a new empirical model of the mars ionospheric total electron content based on mars express marsis data. J Space Weather Space Clim 9:A36. https://doi.org/10.1051/swsc/2019035
Article
Google Scholar
Bertaux JL, Leblanc F, Olivier Witasse E, Quemerais Lilensten J, Stern SA, Sandel B, Korablev O (2005) Discovery of an aurora on Mars. Nature 435:790–794
Article
Google Scholar
Bougher SW, Engel S, Hinson DP, Murphy JR (2004) MGS radio science electron density profiles: interannual variability and implications for the martian neutral atmosphere. J Geophys Res Planets 109:E3. https://doi.org/10.1029/2003JE002154
Article
Google Scholar
Bougher SW, Bell JM, Murphy JR, Lopez-Valverde MA, Withers PG (2006) Polar warming in the Mars thermosphere: seasonal variations owing to changing insolation and dust distributions. Geophys Res Lett. https://doi.org/10.1029/2005GL024059
Article
Google Scholar
Brain D, Barabash S, Boesswetter A, Bougher S, Brecht S, Chanteur G, Hurley D, Dubinin E, Fang X, Fraenz M, Halekas J, Harnett E, Holmstrom M, Kallio E, Lammer H, Ledvina S, Liemohn M, Liu K, Luhmann J, Ma Y, Modolo R, Nagy A, Motschmann U, Nilsson H, Shinagawa H, Simon S, Terada N (2010) A comparison of global models for the solar wind interaction with mars. Icarus 206(1):139–151. https://doi.org/10.1016/j.icarus.2009.06.030
Article
Google Scholar
Brain DA, Halekas JS, Lillis R, Mitchell DL, Lin RP, Crider DH (2005) Variability of the altitude of the martian sheath. Geophys Res Lett. https://doi.org/10.1029/2005GL023126
Article
Google Scholar
Cain JC, Ferguson BB, Mozzoni D (2003) An \(n=90\) internal potential function of the Martian crustal magnetic field. J Geophys Res 108(E2):5008. https://doi.org/10.1029/2000JE001487
Article
Google Scholar
Cao YT, Cui J, Wu XS, Guo JP, Wei Y (2019) Structural variability of the nightside martian ionosphere near the terminator: implications on plasma sources. J Geophys Res Planets 124(6):1495–1511. https://doi.org/10.1029/2019JE005970
Article
Google Scholar
Cartacci M, Amata E, Cicchetti A, Noschese R, Giuppi S, Langlais B, Frigeri A, Orosei R, Picardi G (2013) Mars ionosphere total electron content analysis from MARSIS subsurface data. Icarus 223:423–437. https://doi.org/10.1016/j.icarus.2012.12.011
Article
Google Scholar
Cartacci M, Sánchez-Cano B, Orosei R, Noschese R, Cicchetti A, Witasse O, Cantini F, Pio Rossi A (2018) Improved estimation of Mars ionosphere total electron content. Icarus 299:396–410. https://doi.org/10.1016/j.icarus.2017.07.033
Article
Google Scholar
Chapman S (1931) Absorption and dissociative or ionising effects of monochromatic radiation in an atmosphere on a rotating earth. Proc Phys Soc London 43:1047–1055
Google Scholar
Chen RH, Cravens TE, Nagy AF (1978) The martian ionosphere in light of the viking observations. J Geophys Res Space Phys 83(A8):3871–3876. https://doi.org/10.1029/JA083iA08p03871
Article
Google Scholar
Chicarro A, Martin P, Traunter R (2004) Mars express: a European mission to the red planet. European Space Agency Publication Division, Noordwijk, Netherlands
Google Scholar
Cravens TE, Hamil O, Houston S, Bougher S, Ma Y, Brain D, Ledvina S (2017) Estimates of ionospheric transport and ion loss at mars. J Geophys Res Space Phys 122(10):10,626–10,637. https://doi.org/10.1002/2017JA024582
Article
Google Scholar
Cui J, Galand M, Yelle RV, Wei Y, Zhang SJ (2015) Day-to-night transport in the martian ionosphere: implications from total electron content measurements. J Geophys Res Space Phys 120(3):2333–2346. https://doi.org/10.1002/2014JA020788
Article
Google Scholar
Drob DP, Emmert JT, Meriwether JW, Makela JJ, Doornbos E, Conde M, Hernandez G, Noto J, Zawdie KA, McDonald SE, Huba JD, Klenzing JH (2015) An update to the horizontal wind model (HWM): the quiet time thermosphere. Earth Space Sci 2:301–319. https://doi.org/10.1002/2014EA000089
Article
Google Scholar
Dungey JW (1961) Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6(2):47–48
Article
Google Scholar
Duru F, Gurnett DA, Averkamp TF, Kirchner DL, Huff RL, Persoon AM, Plaut JJ, Picardi G (2006) Magnetically controlled structures in the ionosphere of mars. J Geophys Res Space Phys. https://doi.org/10.1029/2006JA011975
Article
Google Scholar
Eckermann SD, Ma J, Hoppel KW, Kuhl DD, Allen DR, Doyle JA, Viner KC, Ruston BC, Baker NL, Swadley SD, Whitcomb TR, Reynolds CA, Xu L, Kaifler N, Kaifler B, Reid IM, Murphy DJ, Love PT (2018) High-altitude (0–100 km) global atmospheric reanalysis system: description and application to the 2014 austral winter of the deep propagating gravity wave experiment (DEEPWAVE). Monthly Weather Rev 146(8):2639–2666. https://doi.org/10.1175/mwr-d-17-0386.1
Article
Google Scholar
Edberg NJT, Lester M, Cowley SWH, Eriksson AI (2008) Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields. J Geophys Res Space Phys. https://doi.org/10.1029/2008JA013096
Article
Google Scholar
Emmert JT, Lean JL, Picone JM (2010) Record-low thermospheric density during the 2008 solar minimum. Geophys Res Lett 37(L12):102. https://doi.org/10.1029/2010GL043671
Article
Google Scholar
Evans JV, Holt JM (1978) Nighttime proton fluxes at Millstone Hill. Planetary Space Sci 26:727–744
Article
Google Scholar
Forget F, Hourdin F, Fournier R, Hourdin C, Talagrand O (1999) Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J Geophys Res 104(E10):24,155–24,175. https://doi.org/10.1029/1999JE001025
Article
Google Scholar
Fox JL (1997) Upper limits to the outflow of ions at mars: implications for atmospheric evolution. Geophys Res Lett 24(22):2901–2904. https://doi.org/10.1029/97GL52842
Article
Google Scholar
Fox JL (2009) Morphology of the dayside ionosphere of mars: implications for ion outflows. J Geophys Res Planets. https://doi.org/10.1029/2009JE003432
Article
Google Scholar
Frissell NA, Baker JBH, Ruohoniemi JM, Greenwald RA, Gerrard AJ, Miller ES, West ML (2016) Sources and characteristics of medium-scale traveling ionospheric disturbances observed by high-frequency radars in the North American sector. J Geophys Res Space Phys 121(4):3722–3739. https://doi.org/10.1002/2015JA022168
Article
Google Scholar
Fuller-Rowell TJ (1998) The “thermospheric spoon”: a mechanism for the semiannual density variation. J Geophys Res 103(A3):3951–3956
Article
Google Scholar
Fuller-Rowell TJ, Rees D, Quegan S, Moffett RJ, Bailey GJ (1988) Simulations of the seasonal and universal time variations of the high-latitude thermosphere and ionosphere using a coupled, three-dimensional, model. Pure Appl Geophys 127(2):189–217
Article
Google Scholar
Girazian Z, Mahaffy PR, Lillis RJ, Benna M, Elrod M, Jakosky BM (2017) Nightside ionosphere of mars: composition, vertical structure, and variability. J Geophys Res Space Phys 122(4):4712–4725. https://doi.org/10.1002/2016JA023508
Article
Google Scholar
Goncharenko LP, Coster AJ, Chau JL, Valladares CE (2010) Nightside ionosphere of mars: composition, vertical structure, and variability. J Geophys Res 115:A00G07. https://doi.org/10.1029/2010JA015400
Article
Google Scholar
González-Galindo F, Chaufray JY, López-Valverde MA, Gilli G, Forget F, Leblanc F, Modolo R, Hess S, Yagi M, (2013) Three-dimensional Martian ionosphere model: I. The photochemical ionosphere below 180 km. J Geophys Res Planets 118:2105–2123. https://doi.org/10.1002/jgre.20150
Article
Google Scholar
Gupta N, Rao NV, Kadhane UR (2019) Dawn-dusk asymmetries in the Martian upper atmosphere. J Geophys Res Planets. https://doi.org/10.1029/2019je006151
Article
Google Scholar
Gurnett DA, Kirchner DL, Huff RL, Morgan DD, Persoon AM, Averkamp TF, Duru F, Nielsen E, Safaeinili A, Plaut JJ, Picardi G (2005) Radar soundings of the ionosphere of Mars. Science 310(5756):1929–1933. https://doi.org/10.1126/science.1121868
Article
Google Scholar
Hagan ME, Forbes JM (2002) Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J Geophys Res 107(D24):4754. https://doi.org/10.1029/2001JD001236
Article
Google Scholar
Halekas JS (2017) Seasonal variability of the hydrogen exosphere of Mars. J Geophys Res Planets 122(5):901–911. https://doi.org/10.1002/2017JE005306
Article
Google Scholar
Halekas JS, Brain DA, Luhmann JG, DiBraccio GA, Ruhunusiri S, Harada Y, Fowler CM, Mitchell DL, Connerney JEP, Espley JR, Mazelle C, Jakosky BM (2017) Flows, fields, and forces in the Mars-Solar wind interaction. J Geophys Res Space Phys 122(11):11,320–11,341. https://doi.org/10.1002/2017JA024772
Article
Google Scholar
Hall BES, Lester M, Nichols JD, Sánchez-Cano B, Andrews DJ, Opgenoorth HJ, Fränz M (2016a) A survey of superthermal electron flux depressions, or “electron holes,” within the illuminated Martian induced magnetosphere. J Geophys Res Space Phys 121(5):4835–4857. https://doi.org/10.1002/2015JA021866
Article
Google Scholar
Hall BES, Lester M, Sánchez-Cano B, Nichols JD, Andrews DJ, Edberg NJT, Opgenoorth HJ, Fränz M, Holmström M, Ramstad R, Witasse O, Cartacci M, Cicchetti A, Noschese R, Orosei R (2016b) Annual variations in the Martian bow shock location as observed by the Mars Express mission. J Geophys Res Space Phys 121(11):11,474–11,494. https://doi.org/10.1002/2016JA023316
Article
Google Scholar
Hanson WB, Moffett RJ (1966) lonization transport effects in the equatorial F region. J Geophys Res 71:5559–5571. https://doi.org/10.1029/JZ071i023p05559
Article
Google Scholar
Hanson WB, Sanatani S, Zuccaro DR (1977) The martian ionosphere as observed by the viking retarding potential analyzers. J Geophys Res (1896–1977) 82(28):4351–4363. https://doi.org/10.1029/JS082i028p04351
Article
Google Scholar
Heelis RA (2004) Electrodynamics in the low and middle latitude ionosphere: a tutorial. J Atmospheric Solar Terrestrial Phys 66(10):825–838
Article
Google Scholar
Huber PJ (1963) Robust estimation of a location parameter. Ann Math Stat 35(1):73–101
Article
Google Scholar
Immel TJ, Sagawa E, England SL, Henderson SB, Hagan ME, Mende SB, Frey HU, Swenson CM, Paxton LJ (2006) Control of equatorial ionospheric morphology by atmospheric tides. Geophys Res Lett 33(L15):108. https://doi.org/10.1029/2006GL026161
Article
Google Scholar
Jee G, Burns AG, Kim YH, Wang W (2009) Seasonal and solar activity variations of the Weddell Sea anomaly observed in the TOPEX total electron content measurements. J Geophys Res Space Phys. https://doi.org/10.1029/2008JA013801
Article
Google Scholar
Jones M, Emmert JT, Drob DP, Picone JM, Meier RR (2018) Origins of the thermosphere-ionosphere semiannual oscillation: reformulating the “thermospheric spoon” mechanism. J Geophys Res Space Phys 123(1):931–954. https://doi.org/10.1002/2017ja024861
Article
Google Scholar
Kar J, Mahajan KK, Kohli R (1996) On the outflow of o2 + ions at mars. J Geophys Res Planets 101(E5):12,747–12,752. https://doi.org/10.1029/95JE03526
Article
Google Scholar
Kartalev M, Rycroft M, Papitashvili V (2004) A quantitative model of the effect of global thunderstorms on the global distribution of ionospheric electrostatic potential. J Atmospheric Solar Terrestrial Phys 66(13):1233–1240. https://doi.org/10.1016/j.jastp.2004.05.012
Article
Google Scholar
Kelley MC (2009) The Earth’s ionosphere: plasma physics and electrodynamics, International Geophysics Series, vol 96, 2nd edn. San Diego, Elsevier
Google Scholar
Kersley L, Hajeb-Hosseinieh H, Edwards KJ (1978) Plasma fluxes between ionosphere and protonosphere. Nature 271:427–429
Article
Google Scholar
Lillis RJ, Mitchell DL, Steckiewicz M, Brain D, Xu S, Weber T, Halekas J, Connerney J, Espley J, Benna M, Elrod M, Thiemann E, Eparvier F (2018) Ionizing electrons on the martian nightside: structure and variability. J Geophys Res Space Phys 123(5):4349–4363. https://doi.org/10.1029/2017JA025151
Article
Google Scholar
Lühr H, Häusler K, Stolle C (2007) Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides. Geophys Res Lett 34(L16):102. https://doi.org/10.1029/2007GL030639
Article
Google Scholar
Macmillan S, Finlay C (2010) The International Geomagnetic Reference Field. Geomagnetic Observations and Models. Springer Netherlands, Dordrecht, pp 265–276, https://doi.org/10.1007/978-90-481-9858-0_10
Matta M, Mendillo M, Withers P, Morgan D (2015) Interpreting mars ionospheric anomalies over crustal magnetic field regions using a 2-d ionospheric model. J Geophys Res Space Phys 120(1):766–777. https://doi.org/10.1002/2014JA020721
Article
Google Scholar
Maute A, Richmond AD (2016) F-region dynamo simulations at low and mid-latitude. Space Science Reviews. pp 1–23, https://doi.org/10.1007/s11214-016-0262-3
Mazelle C, Winterhalter D, Sauer K, Trotignon J, Acuña M, Baumgärtel K, Bertucci C, Brain D, Brecht S, Delva M, Dubinin E, Øieroset M, Slavin J (2004) Bow shock and upstream phenomena at Mars. Space Sci Rev 111(1):115–181. https://doi.org/10.1023/B:SPAC.0000032717.98679.d0
Article
Google Scholar
Mendillo M, Smith S, Wroten J, Rishbeth H (2003) Simultaneous ionospheric variability on Earth and Mars. J Geophys Res 108(A12):1432. https://doi.org/10.1029/2003JA009961
Article
Google Scholar
Mendillo M, Lollo A, Withers P, Matta M, Pätzold M, Tellmann S (2011) Modeling mars’ ionosphere with constraints from same-day observations by mars global surveyor and mars express. J Geophys Res Space Phys. https://doi.org/10.1029/2011JA016865
Article
Google Scholar
Mendillo M, Narvaez C, Lawler G, Kofman W, Mouginot J, Morgan D, Gurnett D (2015) The equivalent slab thickness of mars’ ionosphere: implications for thermospheric temperature. Geophys Res Lett 42(9):3560–3568. https://doi.org/10.1002/2015GL063096
Article
Google Scholar
Mendillo M, Trovato J, Narvaez C, Mayyasi M, Moore L, Vogt MF, Fallows K, Withers P, Martinis C (2016) Comparative aeronomy: molecular ionospheres at Earth and Mars. J Geophys Res Space Phys 121(10):10,269–10,288. https://doi.org/10.1002/2016JA023097
Article
Google Scholar
Meriwether JW (1983) Observations of thermospheric dynamics at high latitudes from ground and space. Radio Sci 18(6):1035–1052. https://doi.org/10.1029/RS018i006p01035
Article
Google Scholar
Millour E, Forget F, Spiga A, Vals M, Zakharov V, Montabone L, Lefèvre F, Montmessin F, Chaufray JY, López-Valverde MA, González-Galindo F, Lewis SR, Read PL, Desjean MC, Cipriani F, the MCD development team (2018) The Mars Climate Database (version 5.3). In: From Mars Express to ExoMars
Mouginot J, Kofman W, Safaeinili A, Herique A (2008) Correction of the ionospheric distortion on the MARSIS surface sounding echoes. Planet Space Sci 56:917–926. https://doi.org/10.1016/j.pss.2008.01.010
Article
Google Scholar
Nĕmec F, Morgan DD, Gurnett DA, Duru F (2010) Nightside ionosphere of mars: radar soundings by the mars express spacecraft. J Geophys Res Planets. https://doi.org/10.1029/2010JE003663
Article
Google Scholar
Occhipinti G, Kherani EA, Lognonné P (2008) Geomagnetic dependence of ionospheric disturbances induced by tsunamigenic internal gravity waves. Geophys J Int 173:753–765. https://doi.org/10.1111/j.1365-246X.2008.03760.x
Article
Google Scholar
Ogawa T, Nishitani N, Tsugawa T, Shiokawa K (2012) Giant ionospheric disturbances observed with the SuperDARN hokkaido HF radar and GPS network after the 2011 tohoku earthquake. Earth Planets Space 64(12):1295–1307. https://doi.org/10.5047/eps.2012.08.001
Article
Google Scholar
Orosei R, Jordan R, Morgan D, Cartacci M, Cicchetti A, Duru F, Gurnett D, Heggy E, Kirchner D, Noschese R, Kofman W, Masdea A, Plaut J, Seu R, Watters T, Picardi G (2015) Mars advanced radar for subsurface and ionospheric sounding (MARSIS) after nine years of operation: a summary. Planet Space Sci 112:98–114. https://doi.org/10.1016/j.pss.2014.07.010
Article
Google Scholar
Orosei R, Lauro SE, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, Di Paolo F, Flamini E, Mattei E, Pajola M, Soldovieri F, Cartacci M, Cassenti F, Frigeri A, Giuppi S, Martufi R, Masdea A, Mitri G, Nenna C, Noschese R, Restano M, Seu R (2018) Radar evidence of subglacial liquid water on Mars. Science 361(6401):490–493. https://doi.org/10.1126/science.aar7268
Article
Google Scholar
Pacheco EE, Heelis RA, Su SY (2010) Quiet time meridional (vertical) ion drifts at low and middle latitudes observed by ROCSAT-1. J Geophys Res Space Phys. https://doi.org/10.1029/2009JA015108
Article
Google Scholar
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830
Google Scholar
Picardi G, Biccari D, Seu R, Plaut J, Johnson WTK, Jordan RL, Safaeinili A, Gurnett DA, Huff R, Orosei R, Bombaci O, Calabrese D, Zampolini E (2004) MARSIS: Mars Advanced Radar for Subsurface and Ionosphere Sounding. Mars express: a European mission to the red planet. European Space Agency Publication Division, Noordwijk, Netherlands., pp 51–70
Google Scholar
Ramírez-Nicolás M, Sánchez-Cano B, Witasse O, Blelly PL, Vázquez L, Lester M (2016) The effect of the induced magnetic field on the electron density vertical profile of the mars’ ionosphere: a Mars Express MARSIS radar data analysis and interpretation, a case study. Planetary Space Sci 126:49–62. https://doi.org/10.1016/j.pss.2016.03.017
Article
Google Scholar
Richards PG, Fennelly JA, Torr DG (1994) EUVAC: a solar EUV flux model for aeronomic calculations. J Geophys Res 99(A5):8981–8992
Article
Google Scholar
Rideout W, Coster AJ (2006) Automated GPS processing for global total electron content data. GPS Solutions 10(3):219–228. https://doi.org/10.1007/s10291-006-0029-5
Article
Google Scholar
Rishbeth H, Mendillo M (2004) Ionospheric layers of Mars and Earth. Planetary Space Sci 52(9):849–852. https://doi.org/10.1016/j.pss.2004.02.007
Article
Google Scholar
Safaeinili A, Kofman W, Mouginot J, Gim Y, Herique A, Ivanov AB, Plaut JJ, Picardi G (2007) Estimation of the total electron content of the Martian ionosphere using radar sounder surface echoes. Geophys Res Lett. https://doi.org/10.1029/2007GL032154
Article
Google Scholar
Sánchez-Cano B, Radicella S, Herraiz M, Witasse O, Rodríguez-Caderot G (2013) NeMars: an empirical model of the martian dayside ionosphere based on Mars Express MARSIS data. Icarus 225(1):236–247. https://doi.org/10.1016/j.icarus.2013.03.021
Article
Google Scholar
Sánchez-Cano B, Lester M, Witasse O, Milan SE, Hall BES, Blelly PL, Radicella SM, Morgan DD (2015a) Evidence of scale height variations in the Martian ionosphere over the solar cycle. J Geophys Res Space Phys 120(12):10,913–10,925. https://doi.org/10.1002/2015JA021949
Article
Google Scholar
Sánchez-Cano B, Morgan DD, Witasse O, Radicella SM, Herraiz M, Orosei R, Cartacci M, Cicchetti A, Noschese R, Kofman W, Grima C, Mouginot J, Gurnett DA, Lester M, Blelly PL, Opgenoorth H, Quinsac G (2015b) Total electron content in the martian atmosphere: a critical assessment of the Mars Express MARSIS data sets. J Geophys Res Space Phys 120(3):2166–2182. https://doi.org/10.1002/2014JA020630
Article
Google Scholar
Sánchez-Cano B, Lester M, Witasse O, Milan SE, Hall BES, Cartacci M, Peter K, Morgan DD, Blelly PL, Radicella S, Cicchetti A, Noschese R, Orosei R, Pätzold M (2016) Solar cycle variations in the ionosphere of Mars as seen by multiple Mars Express data sets. J Geophys Res Space Phys 121(3):2547–2568. https://doi.org/10.1002/2015JA022281
Article
Google Scholar
Sánchez-Cano B, Lester M, Witasse O, Blelly PL, Indurain M, Cartacci M, González-Galindo F, Vicente-Retortillo Á, Cicchetti A, Noschese R (2018) Spatial, seasonal, and solar cycle variations of the Martian Total Electron Content (TEC): Is the TEC a good tracer for atmospheric cycles? J Geophys Res Planets 123(7):1746–1759. https://doi.org/10.1029/2018JE005626
Article
Google Scholar
Sánchez-Cano B, Blelly PL, Lester M, Witasse O, Cartacci M, Orosei R, Opgenoorth H, Lillis R, Leblanc F, Milan SE, Conroy P, Floury N, Plane JMC, Cicchetti A, Noschese R, Kopf AJ (2019) Origin of the extended mars radar blackout of september 2017. J Geophys Res Space Phys 124(6):4556–4568. https://doi.org/10.1029/2018JA026403
Article
Google Scholar
Schunk RW, Nagy AF (2009) Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd edn. Atmospheric and Space Science Series, Cambridge University Press, New York, NY (USA), https://doi.org/10.1017/CBO9780511635342
Shinagawa H, Cravens TE (1989) A one-dimensional multispecies magnetohydrodynamic model of the dayside ionosphere of Mars. J Geophys Res 94(A6):6506–6516
Article
Google Scholar
Syrovatskii SI (1978) Freezing-in condition for a magnetic field and current sheets in plasma. Astrophysics Space Sci 56:3–12
Article
Google Scholar
The MathWorks, Inc (2019) Regress. https://uk.mathworks.com/help/stats/robustfit.html
Wang JS, Nielsen E (2003) Behavior of the Martian dayside electron density peak during global dust storms. Planetary Space Sci 51(4):329–338. https://doi.org/10.1016/S0032-0633(03)00015-1
Article
Google Scholar
Wang JS, Nielsen E (2004) Evidence for topographic effects on the Martian ionosphere. Planetary Space Sci 52(9):881–886. https://doi.org/10.1016/j.pss.2004.01.008
Article
Google Scholar
Welling D, André M, Dandouras I, Delcour D, Fazakerly A, Fontaine D, Foster J, Ilie R, Kistler L, Lee J, Leimohn M, Slavin J, Wang CP, Wiltberger M, Yau A (2015) The Earth: plasma sources, losses, and transport processes. Space Sci Rev 192:145–208. https://doi.org/10.1007/s11214-015-0187-2
Article
Google Scholar
Witasse O, Cravens T, Mendillo M, Moses J, Kliore A, Nagy AF, Breus T (2008) Solar system ionospheres. Space Sci Rev 139(1):235–265. https://doi.org/10.1007/s11214-008-9395-3
Article
Google Scholar
Withers P (2009) A review of observed variability in the dayside ionosphere of Mars. Adv Space Res 44(3):277–307. https://doi.org/10.1016/j.asr.2009.04.027
Article
Google Scholar
Withers P, Fillingim MO, Lillis RJ, Häusler B, Hinson DP, Tyler GL, Pätzold M, Peter K, Tellmann S, Witasse O (2012) Observations of the nightside ionosphere of mars by the mars express radio science experiment (mars). J Geophys Res Space Phys. https://doi.org/10.1029/2012JA018185
Article
Google Scholar
Woods TN, Eparvier FG, Bailey SM, Chamberlin PC, Lean J, Rottman GJ, Solomon SC, Tobiska WK, Woodraska DL (2005) Solar EUV Experiment (SEE): mission overview and first results. J Geophys Res 110(A01):312. https://doi.org/10.1029/2004JA010765
Article
Google Scholar
Wu XS, Cui J, Xu SS, Lillis RJ, Yelle RV, Edberg NJT, Vigren E, Rong ZJ, Fan K, Guo JP, Cao YT, Jiang FY, Wei Y, Mitchell DL (2019) The morphology of the topside martian ionosphere: implications on bulk ion flow. J Geophys Res Planets 124(3):734–751. https://doi.org/10.1029/2018JE005895
Article
Google Scholar
Yiğit E, Medvedev AS, Aylward AD, Hartogh P, Harris MJ (2009) Modeling the effects of gravity wave momentum deposition on the general circulation above the turbopause. J Geophys Res Atmospheres. https://doi.org/10.1029/2008JD011132
Article
Google Scholar
Yiğit E, England SL, Liu G, Medvedev AS, Mahaffy PR, Kuroda T, Jakosky BM (2015) High-altitude gravity waves in the Martian thermosphere observed by MAVEN/NGIMS and modeled by a gravity wave scheme. Geophys Res Lett 42(21):8993–9000. https://doi.org/10.1002/2015GL065307
Article
Google Scholar
Yonezawa T (1959) On the seasonal and non-seasonal annual variations and the semi-annual variation in the noon and midnight electron densities of the F2 layer in middle latitudes. II. J Radio Res Laboratories 6(28):651–668
Google Scholar
Yonezawa T, Arima Y (1959) On the seasonal and non-seasonal annual variations and the semi-annual variation in the noon and midnight electron densities of the F2 layer in middle latitudes. J Radio Res Laboratories 6(25):293–309
Google Scholar
Zou H, Lillis RJ, Wang JS, Nielsen E (2011) Determination of seasonal variations in the Martian neutral atmosphere from observations of ionospheric peak height. J Geophys Res 116(E09):004. https://doi.org/10.1029/2011JE003833
Article
Google Scholar