Aagaard BT, Knepley MG, Williams CA (2013) A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation. J Geophys Res 118(6):3059–3079
Article
Google Scholar
Ader T, Avouac JP, Liu-Zeng J et al (2012) Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. J Geophys Res 117(B4):398–399
Google Scholar
Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth 121(8):6109–6131
Google Scholar
Avouac JP, Meng L, Wei S et al (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nat Geosci 8:9
Article
Google Scholar
Bai D, Unsworth MJ, Meju MA, Ma X, Teng J, Kong X, Sun Y, Sun J, Wang L, Jiang C, Zhao C, Xiao P, Liu M (2010) Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nat Geosci 3:358–362
Article
Google Scholar
Barbot S, Hamiel Y, Fialko Y (2008) Space geodetic investigation of the coseismic and postseismic deformation due to the 2003 Mw72 Altai earthquake: Implications for the local lithospheric rheology. J. Geophys Res. 113:B03403
Google Scholar
Barbot S, Fialko Y, Bock Y (2009) Postseismic deformation due to the Mw6.0, 2004 Parkfield earthquake: Stress-driven creep on a fault with spatially variable rate-and-state friction parameters. J Geophys Res 2009(114):B07405. https://doi.org/10.1029/2008JB005748
Article
Google Scholar
Barbot et al (2010) A unified continuum representation of postseismic relaxation mechanisms: semi-analytic models of afterslip, poroelastic rebound and viscoelastic flow. Geophys J Int 182:1124–1140
Article
Google Scholar
Bettinelli P, Avouac JP, Flouzat M et al (2006) Plate Motion of India and Interseismic Strain in the Nepal Himalaya from GPS and DORIS Measurements. J Geodesy 80(8–11):567–589
Article
Google Scholar
Blacker TD, Owen SJ, Staten ML, Quadros WR, Hanks B, Clark BW, Meyers RJ, Ernst C, Merkley K, Morris R, McBride C. CUBIT Geometry and Mesh Generation Toolkit 15.2 User Documentation. United States: N. p., 2016. Web. doi:https://doi.org/10.2172/1457612
Blewitt G, Hammond WC, Kreemer C (2018) Harnessing the GPS data explosion for interdisciplinary science. Eos 99:1–2
Article
Google Scholar
Bilham R, Larson K, Freymueller J (1997) GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386(6620):61–64
Article
Google Scholar
Bilham R (2004) Earthquakes in India and the Himalaya: tectonics, geodesy and history. Ann Geophys 47(2–3):839–858
Google Scholar
Bollinger L, Avouac JP, Cattin R et al (2004) Stress buildup in the Himalaya. J Geophys Res 109:B11. https://doi.org/10.1029/2003JB002911
Article
Google Scholar
Cattin R, Avouac JP (2000) Modeling mountain building and the seismic cycle in the Himalaya of Nepal. J Geophys Res 105(B6):13389
Article
Google Scholar
Cattin R, Martelet G, Henry P et al (2001) Gravity anomalies, crustal structure and thermo-mechanical support of the Himalaya of Central Nepal. Geophys J Roy Astron Soc 147(2):381–392
Article
Google Scholar
Clark MK, Royden LH (2000) Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology 28(8):703–706
Article
Google Scholar
Diao F, Xiong X, Wang R et al (2014) Overlapping post-seismic deformation processes: afterslip and viscoelastic relaxation following the 2011 Mw 9.0 Tohoku (Japan) earthquake. Geophys J Int 196(1):218–229
Article
Google Scholar
Elliott JR, Jolivet R, González PJ, Avouac JP, Hollingsworth J, Searle MP, Stevens VL (2016) Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nat Geosci 9(2):174–180
Article
Google Scholar
Fialko Y (2004) Evidence of fluid-filled upper crust from observations of post-seismic deformation due to the 1992 Mw7.3 Landers earthquake. J Geophys Res. 109:B08401
Google Scholar
Feng G, Li Z, Shan X, Zhang L, Zhang G, Zhu J (2015) Geodetic model of the 2015 pril 25 Mw7.8 Gorkha Nepal Earthquake and Mw7.3 aftershock estimated from InSAR and GPS data. Geophys J Int. 203:896–900
Article
Google Scholar
Freed AM, Bürgmann R (2004) Evidence of power-law flow in the Mojave desert mantle. Nature 430(6999):548–551
Article
Google Scholar
Freed AM, Bürgmann R, Herring T (2007) Far-reaching transient motions after Mojave earthquakes require broad mantle flow beneath a strong crust. Geophys Res Lett 34(19):228–262
Article
Google Scholar
Freed AM, Ali ST, Bürgmann R (2010) Evolution of stress in Southern California for the past 200 years from coseismic, postseismic and interseismic stress changes. Geophys J Roy Astron Soc 169(3):1164–1179
Article
Google Scholar
Freed AM, Hashima A, Becker, TW et al (2017) Resolving depth-dependent subduction zone viscosity and afterslip from postseismic displacements following the 2011 Tohoku-oki, Japan earthquake. Earth Planet Sci Lett 2017:279–290
Article
Google Scholar
Fu Y, Freymueller JT (2012) Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements. J Geophys Res 117:B3. https://doi.org/10.1029/2011JB008925
Article
Google Scholar
Galetzka J, Melgar D, Genrich JF et al (2015) Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake Nepal. Science 349(6252):1091–1095
Article
Google Scholar
Gonzalez-Ortega A, Fialko Y, Sandwell D et al (2014) El Mayor-Cucapah (Mw 7.2) earthquake: Early near-field postseismic deformation from InSAR and GPS observations. J Geophys Res Solid Earth 119(2):1482–1497
Article
Google Scholar
Gualandi A, Avouac J-P, Galetzka J, Genrich JF, Blewitt G, Adhikari LB, Liu-Zeng J (2016) Pre- and post-seismic deformation related to the 2015, Mw 7.8 Gorkha earthquake Nepal. Tectonophysics 714–715:90–106
Google Scholar
Hetényi G, Cattin R, Vergne J, Nábělek JL (2006) The effective elastic thickness of the India Plate from receiver function imaging, gravity anomalies and thermomechanical modelling. Geophys J Int 167:1106–1118
Article
Google Scholar
Hines TT, Hetland EA (2016) Rapid and simultaneous estimation of fault slip and heterogeneous lithospheric viscosity from post-seismic deformation. Geophys J Int 204:569–582
Article
Google Scholar
Hsu YJ, Simons M, Avouac JP et al (2006) Frictional Afterslip Following the 2005 Nias-Simeulue Earthquake, Sumatra. Science 312(5782):1921
Article
Google Scholar
Hsu Y, Simons M, Williams C et al (2013) Three-dimensional FEM derived elastic Green’s functions for the coseismic deformation of the 2005 Mw8.7 Nias-Simeulue, Sumatra earthquake. Geochem Geophys Geosyst 12:7
Google Scholar
Hu Y, Jeffrey T et al (2014) Contributions of poroelastic rebound and a weak volcanic arc to the postseismic deformation of the 2011 Tohoku earthquake. Earth Planets Space 66(1):106
Article
Google Scholar
Hu Y, Bürgmann R, Banerjee P et al (2016) Asthenosphere rheology inferred from observations of the 2012 Indian Ocean earthquake. Nature. https://doi.org/10.1038/nature19787
Article
Google Scholar
Huang M-H, Bürgmann R, Freed AM (2014) Probing the lithospheric rheology across the eastern margin of the Tibetan Plateau. Earth Planet Sci Lett 396:88–96
Article
Google Scholar
Hughes KLH, Masterlark T, Mooney WD (2010) Poroelastic stress-triggering of the 2005 M8.7 Nias earthquake by the 2004 M92 Sumatra-Andaman earthquake. Earth Planet Sci Lett 293(3–4):289–299. https://doi.org/10.1016/j.epsl.2010.02.043
Article
Google Scholar
Johnston G, Riddell A, Hausler GT, international GNSS service. (2017) In Springer handbook of global navigation satellite systems. Springer, Cham, pp 967–982
Book
Google Scholar
Jouanne F, Gajurel A, Mugnier JL et al (2019) Postseismic deformation following the April 25, 2015 Gorkha earthquake (Nepal): Afterslip versus viscous relaxation. J Asian Earth Sci 176:105–119
Article
Google Scholar
Jiang G, Wang Y, Wen Y et al (2019) Afterslip evolution on the crustal ramp of the Main Himalayan Thrust fault following the 2015 Mw 78 Gorkha (Nepal) earthquake. Tectonophysics 758:29–43
Article
Google Scholar
Jiang Z, Yuan L, Huang D, Yang Z, Hassan A (2018) Postseismic deformation associated with the 2015 mw 7.8 Gorkha earthquake, Nepal: investigating ongoing afterslip and constraining crustal rheology. J Asian Earth Sci. https://doi.org/10.1016/j.jseaes.2017.12.039
Article
Google Scholar
Klein E, Fleitout L, Vigny C et al (2016) Afterslip and viscoelastic relaxation model inferred from the large-scale post-seismic deformation following the 2010 Mw 88 Maule earthquake (Chile). Geophys J Int 205(3):1455–1472
Article
Google Scholar
Kyriakopoulos C, Masterlark T, Stramondo S, Chini M, Bignami C (2013) Coseismic slip distribution for the Mw 9 2011 Tohoku-Oki earthquake derived from 3-D FE modeling. J Geophys Res Solid Earth 118:3837–3847
Article
Google Scholar
Kumar S, Wesnousky SG, Rockwell TK et al (2001) Earthquake recurrence and rupture dynamics of Himalayan Frontal Thrust, India. Science 294(5550):2328–2331
Article
Google Scholar
Laske, G., Masters, G., Ma, Z. and Pasyanos, M. E. CRUST1.0: an updated global model of Earth’s crust. Geophys. Res. Abstr. 15, Abstract EGU2013–2658 (2013).
Lavé J, Avouac J-P (2000) Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of Central Nepal. J Geophys Res 105(B3):5735–5770. https://doi.org/10.1029/1999JB900292
Article
Google Scholar
Lindsey EO, Natsuaki R, Xu X, Shimada M, Hashimoto M, Melgar D, Sandwell DT (2015) Line-of-sight displacement from ALOS-2 interferometry: Mw 7.8 Gorkha earthquake and Mw 7.3 aftershock. Geophys Res Lett 42:6655–6661. https://doi.org/10.1002/2015GL065385
Article
Google Scholar
Lienkaemper JJ, McFarland FS (2017) Long-term afterslip of the 2004 M 6.0 Parkfield, California, earthquake – implications for forecasting amount and duration of afterslip on other major creeping faults. Bull Seismol Soc Am 107:1082–1093
Article
Google Scholar
Liu C, Zheng Y, Wang R, Shan B, Xie Z, Xiong X, Ge C (2016) Rupture processes of the 2015 Mw 7.9 Gorkha earthquake and its Mw 7.3 aftershock and their implications on the seismic risk. Tectonophysics 682:264–277
Article
Google Scholar
Liu J, Ji C, Zhang J et al (2015) Tectonic setting and general features of coseismic rupture of the 25 April, 2015 Mw 7.8 Gorkha, Nepal earthquake (in Chinese). Chin Sci Bull 60(26):40–2655. https://doi.org/10.1360/N972015-00559
Article
Google Scholar
Liu J, Zhang Z, Rollins C, et al (2020) Postseismic deformation following the 2015 Mw7.8 Gorkha (Nepal) earthquake: new GPS data, kinematic and dynamic models, and the roles of afterslip and viscoelastic relaxation. J Geophys Res
Marone CJ, Scholz CH, Bilham R (1991) On the mechanics of earthquake afterslip. J Geophys Res 96:8441–8452
Article
Google Scholar
Masterlark T, DeMets C, Wang H, Sanchez O, Stock J (2001) Homogeneous vs heterogeneous subduction zone models: Coseismic and postseismic deformation. Geophys Res Lett 28(21):4047–4050. https://doi.org/10.1029/2001GL013612
Article
Google Scholar
Masterlark T (2003) Finite element model predictions of static deformation from dislocation sources in a subduction zone: Sensitivities to homogeneous, isotropic, Poisson-solid, and half-space assumptions. J Geophys Res 108(B11):2540. https://doi.org/10.1029/2002JB002296
Article
Google Scholar
Masterlark T, Feigl KL, Haney M, Stone J, Thurber C, Ronchin E (2012) Nonlinear estimation of geometric parameters in FEMs of volcano deformation: Integrating tomography models and geodetic data for Okmok volcano, Alaska. J Geophys Res 117:B02407. https://doi.org/10.1029/2011JB008811
Article
Google Scholar
Mencin D, Bendick R, Upreti BN, Adhikari DP, Gajurel AP, Bhattarai RR, Bilham R (2016) Himalayan strain reservoir inferred from limited afterslip following the Gorkha earthquake. Nat Geosci 9:533–537. https://doi.org/10.1038/ngeo27344
Article
Google Scholar
Monsalve G, Sheehan A, Schulte-Pelkum V, Rajaure S, Pandey M, Wu F (2006) Seismicity and one-dimensional velocity structure of the Himalayan collision zone: earthquakes in the crust and upper mantle. J Geophys Res 111:B10301. https://doi.org/10.1029/2005JB004062
Article
Google Scholar
Nikolaidis RM (2002) Observation of geodetic and seismic deformation with the global positioning system[D]. Univ. of Calif, San Diego
Google Scholar
Paul S (2010) Earthquake and volcano deformation. Princeton University Press, Princeton
Google Scholar
Peltzer G, Rosen P, Rogez F et al (1998) Poroelastic rebound along the Landers 1992 earthquake surface rupture. J Geophys Res Atmosp 1033(B12):30131–30146
Article
Google Scholar
Perfettini H, Avouac J (2004) Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan. J Geophys Res Solid Earth. 109:B2
Google Scholar
Pollitz F, Vergnolle M, Calais E (2003) Fault Interaction and Stress Triggering of 20th Century Earthquakes in Mongolia. J Geophys Res Solid Earth 108:B10
Article
Google Scholar
Pollitz FF (2014) Post-earthquake relaxation using a spectral element method: 2.5- D case. Geophys J Int 198:308–326
Article
Google Scholar
Pratama C, Ito T, Sasajima R, Tabei T et al (2017) Transient rheology of the oceanic asthenosphere following the 2012 indian ocean earthquake inferred from geodetic data. J Asian Earth Sci 147:1
Article
Google Scholar
Qiu Q, Hill EM, Barbot S, Hubbard J, Feng W, Lindsey EO, Tapponnier P (2016) The mechanism of partial rupture of a locked megathrust: The role of fault morphology. Geology 44(10):875–878. https://doi.org/10.1130/G38178.1
Article
Google Scholar
Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solutions 16(4):483–494
Article
Google Scholar
Rousset B, Barbot S, Avouac J-P, Hsu Y-J (2012) Postseismic deformation following the 1999 Chi-Chi earthquake, Taiwan: Implication for lower-crust rheology. J Geophys Res 117:B12405. https://doi.org/10.1029/2012JB009571
Article
Google Scholar
Royden LH, Burchfiel BC, King RW et al (1997) Surface deformation and lower crustal flow in eastern Tibet. Science 276:788–790
Article
Google Scholar
Ryder I, Bürgmann R, Pollitz F (2011) Lower crustal relaxation beneath the Tibetan Plateau and Qaidam Basin following the 2001 Kokoxili earthquake. Geophys J Int 187:613–630
Article
Google Scholar
Sapkota SN, Bollinger L, Klinger Y et al (2013) Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nat Geosci 6(2):152–152
Article
Google Scholar
Savage J, Svarc J (2009) Postseismic relaxation following the 1992 M7.3 Landers and 1999 M7.1 Hector Mine earthquakes, southern California. J Geophys Res. 114:B01401. https://doi.org/10.1029/2008JB005938
Article
Google Scholar
Schulte-Pelkum V, Monsalve G, Sheehan A, Pandey MR, Sapkota S, Bilham R, Wu F (2005) Imaging the Indian subcontinent beneath the Himalaya. Nature 435(7046):1222–1225. https://doi.org/10.1038/nature03678
Article
Google Scholar
Shen Z, Jackson DD, Feng Y, Cline MW, Kim M, Fang P, Bock Y (1994) Postseismic Deformation Following the Landers Earthquake, California, 28 June 1992. Bull Seismol Soc Am 84(3):780–791
Google Scholar
Shen Z-K, Wang M, Zeng Y, Wang F (2015) Strain determination using spatially discrete geodetic data. Bull Seismol Soc Am 105(4):2117–2127. https://doi.org/10.1785/0120140247
Article
Google Scholar
Sreejith K, Sunil P, Agrawal R, Saji AP, Ramesh D, Rajawat A (2016) Coseismic and early postseismic deformation due to the 25 April 2015, Mw7.8 Gorkha, Nepal, earthquake from InSAR and GPS measurements. Geophys Res Lett 43(7):3160–3168
Article
Google Scholar
Stevens VL, Avouac J-P (2015) Interseismic coupling on the Main Himalayan thrust. Geophys Res Lett 42:5828–5837. https://doi.org/10.1002/2015GL064845
Article
Google Scholar
Su X, Yao L, Wu W, Meng G, Su L, Xiong R, Hong S (2019) Crustal Deformation on the Northeastern margin of the Tibetan Plateau from continuous GPS observations. Remote Sens 11:34
Article
Google Scholar
Suito H (2017) Importance of rheological heterogeneity for interpreting viscoelastic relaxation caused by the 2011 Tohoku-Oki earthquake. Earth Planets Space 69:1
Article
Google Scholar
Sun Y, Dong S, Zhang H et al (2013) 3D thermal structure of the continental lithosphere beneath China and adjacent regionss. J Asian Earth Sci 62:697–704
Article
Google Scholar
Taylor M, Yin A (2009) Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, andCenozoic volcanism. Geosphere 5(3):199–214
Article
Google Scholar
Tian Z, Freymueller JT, Yang Z (2020) Spatio-temporal variations of afterslip and viscoelastic relaxation following the Mw7.8 Gorkha (Nepal) earthquake. Earth Planet Sci Lett. https://doi.org/10.1016/j.epsl.2019.116031
Article
Google Scholar
Tung S, Masterlark T (2016) Coseismic slip distribution of the 2015 Mw7.8 Gorkha, Nepal, earthquake from joint inversion of GPS and InSAR data for slip within a 3-D heterogeneous Domain. J Geophys Res Solid Earth 121:3479–3503. https://doi.org/10.1002/2015JB012497
Article
Google Scholar
U.S. Geological Survey (USGS) (2015), USGS National Earthquake Information Center
Wang K, Fialko Y (2014) Space geodetic observations and models of postseismic deformation due to the 2005 M76 Kashmir (Pakistan) earthquake. J Geophys Res Solid Earth 119:7306–7318
Article
Google Scholar
Wang K, Fialko Y (2015) Slip model of the 2015 Mw7.8 Gorkha (Nepal) earthquake from inversions of ALOS-2 and GPS data. Geophys Res Lett 42:7452–7458
Article
Google Scholar
Wang K, Fialko Y (2018) Observations and modeling of coseismic and postseismic deformation due to the 2015 Mw 7.8 Gorkha (Nepal) earthquake. J Geophys Res 1:123. https://doi.org/10.1002/2017JB014620
Article
Google Scholar
Wang R. SDM - A geodetic inversion code incorporating with layered crust structure and curved fault geometry[C]// Egu General Assembly Conference. 2013.
Wang R, Kümpel H-J (2003) Poroelasticity: Efficient modeling of strongly coupled, slow deformation processes in a multilayered half-space. Geophysics 68(2):705–717
Article
Google Scholar
Wang R, Lorenzo-Martín F, Roth F (2006) PSGRN/PSCMP—A new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput Geosci 32(4):527–541. https://doi.org/10.1016/j.cageo.2005.08.006
Article
Google Scholar
Wen Y, Li Z, Xu C, Ryder I, Bürgmann R (2012) Postseismic motion after the 2001 Mw 7.8 Kokoxili earthquake in Tibet observed by InSAR time series. J Geophys Res Solid Earth 117:B8
Article
Google Scholar
Wiseman K, Burgmann R, Freed AM et al (2015) Viscoelastic relaxation in a heterogeneous Earth following the 2004 Sumatra-Andaman earthquake. Earth Planet Sci Lett 2015:308–317
Article
Google Scholar
Wessel P, Luis JF, Uieda L, Scharroo R, Wobbe F, Smith WHF, Tian D (2019) The generic mapping tools version 6. Geochem Geophys Geosyst 20:5556–5564
Article
Google Scholar
Zhao B, Bürgmann R, Wang D, Tan K, Du R, Zhang R (2017) Dominant controls of downdip afterslip and viscous relaxation on the postseismic displacements following the Mw7.9 Gorkha. Nepal, earthquake 122:8376–8401. https://doi.org/10.1002/2017JB014366
Article
Google Scholar
Zhang G, Hetland E, Shan X (2015) Slip in the 2015 Mw 7.9 Gorkha and Mw 7.3 Kodari, Nepal, Earthquakes Revealed by Seismic and Geodetic Data: Delayed Slip in the Gorkha and Slip Deficit between the Two Earthquakes. Seismol Res Lett 86(6):1578–1586. https://doi.org/10.1785/0220150139
Article
Google Scholar