Alexandrova O, Carbone V, Veltri P, Sorriso-Valvo L (2008) Small-scale energy cascade of the solar wind turbulence. Astrophys J 674(2):1153–1157

Article
Google Scholar

Alexandrova O, Saur J, Lacombe C, Mangeney A, Mitchell J, Schwartz SJ et al (2009) Universality of solar-wind turbulent spectrum from mhd to electron scales. Phys Rev Lett 103(16):165003

Article
Google Scholar

Arthur CW, McPherron RL, Means JD (1976) A comparative study of three techniques for using the spectral matrix in wave analysis. Radio Sci 11(10):833–845. https://doi.org/10.1029/RS011i010p00833

Article
Google Scholar

Bruno R, Carbone V (2013) The solar wind as a turbulence laboratory. Living Rev Sol Phys 10(1):1–208

Google Scholar

Chen CHK, Leung L, Boldyrev S, Maruca BA, Bale SD (2014) Ion-scale spectral break of solar wind turbulence at high and low beta. Geophys Res Lett 41:8081–8088. https://doi.org/10.1002/2014GL062009

Article
Google Scholar

Collinson GA, Wilson LB, Sibeck DG, Shane N, Zhang TL, Moore TE, Coates AJ, Barabash S (2012) Short large-amplitude magnetic structures (SLAMS) at Venus. J Geophys Res 117:A10221. https://doi.org/10.1029/2012JA017838

Article
Google Scholar

Delva M, Mazelle C, Bertucci C, Volwerk M, Vörös Z, Zhang TL (2011) Proton cyclotron wave generation mechanisms upstream of Venus. J Geophys Res 116:A02318. https://doi.org/10.1029/2010JA015826

Article
Google Scholar

Du J, Zhang TL, Baumjohann W, Wang C, Volwerk M, Vörös Z, Guicking L (2010) Statistical study of low-frequency magnetic field fluctuations near Venus under the different interplanetary magnetic field orientations. J Geophys Res 115:A12251. https://doi.org/10.1029/2010JA015549

Article
Google Scholar

Dwivedi NK, Schmid D, Narita Y, Kovács P, Vörös Z, Delva M, Zhang T (2015) Statistical investigation on the power-law behavior of magnetic fluctuations in the Venusian magnetosheath. Earth Planets Space 67(1):137

Article
Google Scholar

Guicking L, Glassmeier KH, Auster HU, Delva M, Motschmann U, Narita Y, Zhang TL (2010) Low-frequency magnetic field fluctuations in Venus’ SW interaction region: Venus Express observations. Ann Geophys 28:951–967

Article
Google Scholar

Kiyani KH, Chapman SC, Khotyaintsev YV, Dunlop MW, Sahraoui F (2009) Global scale-invariant dissipation in collisionless plasma turbulence. Phys Rev Lett 103(7):075006

Article
Google Scholar

Klein K, Howes G, Tenbarge J (2014) The violation of the Taylor hypothesis in measurements of solar wind, turbulence. Astrophys J Lett 790(2):L20

Article
Google Scholar

Lu Q, Hu Q, Zank GP (2009) The interaction of Alfvén waves with perpendicular shocks. Astrophys J 706(1):687

Article
Google Scholar

Luhmann JG (1986) The SW interaction with Venus. Space Sci Rev 44:241–306

Article
Google Scholar

Luhmann JG, Tatrallyay M, Russell CT, Winterhalter D (1983) Magnetic field fluctuations in the Venus magnetosheath. Geophys Res Lett 10(8):655–658. https://doi.org/10.1029/GL010i008p00655

Article
Google Scholar

Means JD (1972) Use of the three-dimensional covariance matrix in analyzing the polarization properties of plane waves. J Geophys Res 77(28):5551–5559. https://doi.org/10.1029/JA077i028p05551

Article
Google Scholar

Phillips JL, McComas DJ (1991) The magnetosheath and magnetotail of Venus. Space Sci Rev 55:1–80. https://doi.org/10.1007/BF00177135

Article
Google Scholar

Rong ZJ, Barabash S, Futaana Y, Stenberg G, Zhang TL, Wan WX, Wei Y, Wang X-D, Chai LH, Zhong J (2014) Morphology of magnetic field in near-Venus magnetotail: Venus Express observations. J Geophys Res Space Phys 119:8838–8847. https://doi.org/10.1002/2014JA020461

Article
Google Scholar

Ruhunusiri S, Halekas JS, Espley JR, Mazelle C, Brain D, Harada Y, DiBraccio GA, Livi R, Larson DE et al (2017) Characterization of turbulence in the Mars plasma environment with MAVEN observations. J Geophys Res Space Phys 122(1):656–674. https://doi.org/10.1002/2016JA023456

Article
Google Scholar

Russell CT (2007) Upstream whistler-mode waves at planetary bow shocks: a brief review. J Atmos Sol Terr Phys 69(14):1739–1746

Article
Google Scholar

Samson JC, Olson JV (1980) Some comments on the descriptions of the polarization states of waves. Geophys J Roy Astron Soc 61:115–129. https://doi.org/10.1111/j.1365-246X.1980.tb04308.x

Article
Google Scholar

Shan L, Lu Q, Wu M, Gao X, Huang C, Zhang T, Wang S (2014) Transmission of large-amplitude ULF waves through a quasi-parallel shock at Venus. J Geophys Res Space Phys 119:237–245. https://doi.org/10.1002/2013JA019396

Article
Google Scholar

Shan L, Lu Q, Mazelle C, Huang C, Zhang T, Wu M et al (2015) The shape of the Venusian bow shock at solar minimum and maximum: revisit based on vex observations. Planet Space Sci 109–110:32–37. https://doi.org/10.1016/j.pss.2015.01.004

Article
Google Scholar

Shan L, Mazelle C, Meziane K, Delva M, Lu Q, Ge YS, Du A, Zhang T (2016) Characteristics of quasi-monochromatic ULF waves in the Venusian foreshock. J Geophys Res Space Phys 121:7385–7397. https://doi.org/10.1002/2016JA022876

Article
Google Scholar

Slavin JA, Elphic RC, Russell CT, Intriligator DS, Wolfe JH (1979) Position and shape of the Venus bow shock: Pioneer Venus Orbiter observations. Geophys Res Lett 6(11):901–904. https://doi.org/10.1029/GL006i011p00901

Article
Google Scholar

Svedhem H, Titov DV, McCoy D, Lebreton JP, Barabash S, Bertaux JL et al (2007) The first European mission to Venus. Planet Space Sci 55(12):1636–1652. https://doi.org/10.1016/j.pss.2007.01.013

Article
Google Scholar

Titov DV, Svedhem H, Koschny D, Hoofs R, Barabash S, Bertaux JL et al (2006) Venus Express science planning. Planet Space Sci 54(13–14):1279–1297. https://doi.org/10.1016/j.pss.2006.04.017

Article
Google Scholar

Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Amer Meteor Soc 79:61–78

Article
Google Scholar

Volwerk M, Zhang TL, Delva M, Vörös Z, Baumjohann W, Glassmeier K-H (2008) First identification of mirror mode waves in Venus’ magnetosheath? Geophys Res Lett 35:L12204. https://doi.org/10.1029/2008GL033621

Article
Google Scholar

Vörös Z (2011) Magnetic reconnection associated fluctuations in the deep magnetotail: ARTEMIS results. Nonlinear Process Geophys 18:861–869. https://doi.org/10.5194/npg-18-861-2011

Article
Google Scholar

Vörös Z, Baumjohann W, Nakamura R, Volwerk M, Runov A, Zhang TL et al (2004) Magnetic turbulence in the plasma sheet. J Geophys Res 109:A11215. https://doi.org/10.1029/2004JA010404

Article
Google Scholar

Vörös Z, Baumjohann W, Nakamura R, Runov A, Volwerk M, Asano Y, Jankovičová D, Lucek EA, Rème H (2007) Spectral scaling in the turbulent Earth’s plasma sheet revisited. Nonlinear Process Geophys 14:535–541. https://doi.org/10.5194/npg-14-535-2007

Article
Google Scholar

Vörös Z, Zhang TL, Leubner MP, Volwerk M, Delva M, Baumjohann W, Kudela K (2008a) Magnetic fluctuations and turbulence in the Venus magnetosheath and wake. Geophys Res Lett 35:L11102. https://doi.org/10.1029/2008GL033879

Article
Google Scholar

Vörös Z, Zhang TL, Leubner MP, Volwerk M, Delva M, Baumjohann W (2008b) Intermittent turbulence, noisy fluctuations, and wavy structures in the Venusian magnetosheath and wake. J Geophys Res 113:E00B21. https://doi.org/10.1029/2008JE003159

Article
Google Scholar

Xiao SD, Zhang TL (2018) Solar cycle variation of the Venus magnetic barrier. Planet Space Sci 158:53–62. https://doi.org/10.1016/j.pss.2018.05.006

Article
Google Scholar

Xiao SD, Zhang TL, Baumjohann W (2016) Hemispheric asymmetry in the near-Venusian magnetotail during solar maximum. J Geophys Res Space Phys 121(5):4542–4547. https://doi.org/10.1002/2015JA022093

Article
Google Scholar

Xiao SD, Zhang TL, Wang GQ (2017) Statistical study of low-frequency magnetic field fluctuations near Venus during the solar cycle. J Geophys Res Space Phys 122:8409–8418. https://doi.org/10.1002/2017JA023878

Article
Google Scholar

Xiao SD, Zhang TL, Vörös Z (2018) Magnetic fluctuations and turbulence in the Venusian magnetosheath downstream of different types of bow shock. J Geophys Res Space Phys 123:8219–8226. https://doi.org/10.1029/2018JA025250

Article
Google Scholar

Xiao SD, Zhang TL, Vörös Z, Wu MY, Wang GQ, Chen YQ (2020a) Turbulence near the Venusian bow shock: Venus Express observations. J Geophys Res Space Phys. https://doi.org/10.1029/2019JA027190

Article
Google Scholar

Xiao SD, Wu MY, Wang GQ, Wang G, Chen YQ, Zhang TL (2020b) Turbulence in the near-Venusian space: Venus Express observations. Earth Planet Phys 4(1):82–87. https://doi.org/10.26464/epp2020012

Article
Google Scholar

Xiao SD, Wu MY, Wang GQ, Chen YQ, Zhang TL (2020c) Survey of 1-Hz waves in the near-Venusian space: Venus Express observations. Planet Space Sci 187:104933. https://doi.org/10.1016/j.pss.2020.104933

Article
Google Scholar

Yordanova E, Vaivads A, Andre M, Buchert SC, Voeroes Z (2008) Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the Cluster spacecraft. Phys Rev Lett 100(20):205003

Article
Google Scholar

Zhang TL, Luhmann JG, Russell CT (1991) The magnetic barrier at Venus. J Geophys Res 96:11145–11153

Article
Google Scholar

Zhang TL, Baumjohann W, Delva M, Auster H-U, Balogh A, Russell CT et al (2006) Magnetic field investigation of the Venus plasma environment: expected new results from Venus Express. Planet Space Sci 54(13–14):1336–1343. https://doi.org/10.1016/j.pss.2006.04.018

Article
Google Scholar

Zhang TL et al (2008a) Induced magnetosphere and its outer boundary at Venus. J Geophys Res 113:E00B20. https://doi.org/10.1029/2008JE003215

Article
Google Scholar

Zhang TL, Delva M, Baumjohann W et al (2008b) Initial Venus Express magnetic field observations of the magnetic barrier at solar minimum. Planet Space Sci 56(6):790–795

Article
Google Scholar

Zhang TL et al (2008c) Initial Venus Express magnetic field observations of the Venus bow shock location at solar minimum. Planet Space Sci 56:785–789. https://doi.org/10.1016/j.pss.2007.09.012

Article
Google Scholar