Adhikari S, Ivins ER (2016) Climate-drived polar motion: 2003–2015. Sci Adv 2:e1501693

Article
Google Scholar

Andrews SB, Moore P, King MA (2015) Mass change from GRACE: a simulated comparison of Level-1B analysis techniques. Geophys J Int 200:503–518

Article
Google Scholar

Barletta VR, Sørensen LS, Forsberg R (2013) Scatter of mass change estimates at basin scale for Greenland and Antarctica. Cryosphere 7(5):1411–1432

Article
Google Scholar

Barnes RTH, Hide R, White AA, Wilson CA (1983) Atmospheric angular momentum fluctuations, length-of-day changes and polar motion. Proc R Soc London Ser A 387:31–73

Article
Google Scholar

Boening C, Lebsock M, Landerer F, Stephens G (2012) Snowfall-driven mass change on the East Antarctic ice sheet. Geophys Res Lett 39:L21501

Article
Google Scholar

Chao BF (2016) Caveats on the equivalent water thickness and surface mascon solutions derived from the GRACE satellite-observed time-variable gravity. J Geod 90:807–813

Article
Google Scholar

Chen JL, Wilson CR, Ries JC, Tapley BD (2013) Rapid ice melting drives Earth’s pole to the east. Geophys Res Lett 40:2625–2630

Article
Google Scholar

Chen W, Li J, Ray J, Cheng M (2017) Improved geophysical excitations constrained by polar motion observations and GRACE/SLR time-dependent gravity. Geodesy Geodyn 8:377–388

Article
Google Scholar

Chen W, Luo J, Ray J, Yu N, Li J (2019) Multiple-data-based monthly geopotential model set LDCmgm90. Sci Data 6:228

Article
Google Scholar

Chen W, Luo J, Ray J, Yu N, Li J (2020) LDCmgm90 monthly geopotential model set with separate GIA model. https://www.nature.com/articles/s41597-019-0239-7

Clarke PJ, Lavallée DA, Blewitt G, van Dam TM, Wahr JM (2005) Effect of gravitational consistency and mass conservation on seasonal surface mass loading models. Geophys Res Lett 32:L08306

Article
Google Scholar

Dahle C, Murböck M, Flechtner F, Dobslaw H, Michalak G, Neumayer H, Abrykosov O, Reinhold A, König R, Sulzbach R, Förste C (2019) The GFZ GRACE RL06 Monthly Gravity Field Time Series: processing details and quality assessment. Remote Sens 11(18):2116

Article
Google Scholar

Dobslaw H, Dill R (2019) Product Description Document ESMGFZ EAM. Effective angular momentum functions from Earth System Modelling at GeoForschungsZentrum in Potsdam. http://rz-vm115.gfz-potsdam.de:8080/repository/entry/show?entryid=e8e59d73-c0c2-4a9d-b53b-f2cd70f85e28

Göttl F, Schmidt M, Heinkelmann R, Savcenko R, Bouman J (2012) Combination of gravimetric and altimetric space observations for estimating oceanic polar motion excitations. J Geophys Res 117:C10022

Google Scholar

Göttl F (2013) Kombination geodätischer Raumbeobachtungen zur Bestimmung von geophysikalischen Anregungsmechanismen der Polbewegung. In: Deutsche Geodätische Kommission, C series 741. Verlag der Bayerischen Akademie der Wissenschaften, München. https://mediatum.ub.tum.de/doc/1301105/1301105.pdf

Göttl F, Schmidt M, Seitz F, Bloßfeld M (2015) Separation of atmospheric, oceanic and hydrological polar motion excitation mechanisms based on a combination of geometric and gravimetric space observations. J Geod 89:377–390

Article
Google Scholar

Göttl F, Schmidt M, Seitz F (2018) Mass-related excitation of polar motion: an assessment of the new RL06 GRACE gravity field models. Earth Planets Space 70:195

Article
Google Scholar

Göttl F, Murböck M, Schmidt M, Seitz F (2019) Reducing filter effects in GRACE-derived polar motion excitations. Earth Planets Space 71:117

Article
Google Scholar

Groh A, Ewert H, Scheinert M, Fritsche M, Rülke A, Richter A, Rosenau R, Dietrich R (2012) An investigation of glacial isostatic adjustment over the Amundsen Sea sector, West Antarctica. Earth Global Planet Change 98–99:45–53

Article
Google Scholar

Groh A, Horwath M (2016) The method of tailored sensitivity kernels for GRACE mass change estimates. Earth Geophys Res Abs 18: EGU2016-12065

Groh A, Horwath M, Horvath A, Meister R, Sørensen LS, Barletta VR, Forsberg R, Wouters B, Ditmar P, Ran J, Klees R, Su X, Shang K, Guo J, Shum CK, Schrama E, Shepherd A (2019) Evaluating GRACE mass change time series for the Antarctic and Greenland ice sheet-Methods and results. Earth Geosci 9:415

Google Scholar

Gross R (2015) Earth rotation variations - long period. In: Schubert G (ed) Treaties on geophysics, vol 3E2. Elsevier, Heidelberg, pp 215–261

Chapter
Google Scholar

Holland PR, Bracegirdle TJ, Dutrieux P, Jenkins A, Steig EJ (2019) West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat Geosci 12:718–724

Article
Google Scholar

Horwath M, Dietrich R (2009) Signal and error in mass change inferences from GRACE: the case of Antarctica. Geophys J Int 177(3):849–864

Article
Google Scholar

Jin S, Chamber DP, Tapley BD (2010) Hydrological and oceanic effects on polar motion from GRACE and models. J Geophys Res 115:B02403

Google Scholar

Ligtenberg S, Helsen M, van den Broeke M (2012) An improved semi-empirical model for the densification of Antarctic firn. Cryosphere 5:809–819

Article
Google Scholar

Loomis BD, Rachlin KE, Wiese DN, Landerer FW, Luthcke SB (2020) Replacing GRACE/GRACE-FO with satellite laser ranging: Impacts on Antarctic Ice Sheet mass change. Geophys Res Lett 47:e2019GL085488

Article
Google Scholar

Luthcke SB, Sabaka TJ, Loomis BD, Arendt AA, McCarthy JJ, Camp J (2013) Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J Glaciol 59(216):613–631

Article
Google Scholar

Martin-Español A, King MA, Zammit-Mangion A, Andrews SB, Moore P, Bamber JL (2016) An assessment of forward and inverse GIA solutions for Antarctica. J Geophys Res Solid Earth 121:6947–6965

Article
Google Scholar

Mathews PM, Buffett BA, Herring TA, Shapiro II (1991) Forced nutations of the Earth: influence of inner core dynamics, 2. Numerical results and comparisons. J Geophys Res 96:8243–8257

Article
Google Scholar

Mayer-Gürr T, Behzadpour S, Ellmer M, Kvas A, Klinger B, Strasser S, Zehentner N (2018) ITSG-Grace2018 - Monthly. Daily and Static Gravity Field Solutions from GRACE. https://doi.org/10.5880/ICGEM.2018.003

McMillan M, Shepherd A, Sundal A, Briggs K, Muir A, Ridout A, Hogg A, Wingham D (2014) Increased ice losses from Antarctica detected by CryoSat-2. Geophys Res Lett 41:3899–3905

Article
Google Scholar

Meyrath T, van Dam T (2016) A comparison of interannual hydrological polar motion excitation from GRACE and geodetic observations. J Geod 99:1–9

Article
Google Scholar

Nastula J, Ponte RM, Salstein DA (2007) Comparison of polar motion excitation series derived from GRACE and from analyses of geophysical fluids. Geophys Res Lett 34:L11306

Article
Google Scholar

Peltier WR (2015) The history of Earth’s rotation: impacts of deep Earth physics and surface climate variability. In: Schubert G (ed) Treatise on Geophysics, vol 9E2. Elsevier, Oxford, pp 221–279

Chapter
Google Scholar

Petit G, Luzum B (2010) IERS Conventions (2010), IERS Technical Note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt a. M. (. 978-3-89888-989-6)

Rietbroek R, Brunnabend SE, Kusche J, Schröter J (2012) Resolving sea level contributions by identifying fingerprints in time-variable gravity and altimetry. J Geodyn 59–60:72–81

Article
Google Scholar

Rignot E, Mouginot J, Scheuchl B (2011) Antarctic grounding line mapping from differential satellite radar interferometry. Geophys Res Lett 38:L10504

Article
Google Scholar

Sasgen I, Konrad H, Helm V, Grosfeld K (2019) High-Resolution Mass Trends of the Antarctic Ice Sheet through a Spectral Combination of Satellite Gravimetry and Radar Altimetry Observations. Remote Sens 11:144

Article
Google Scholar

Save H, Bettadpur S, Taply BD (2012) Reducing errors in the GRACE gravity solutions using regularization. J Geod 86(9):695–711

Article
Google Scholar

Save H, Bettadpur S, Taply BD (2016) High resolution CSR GRACE RL05 mascons. J Geophys Res Solid Earth 1:121

Google Scholar

Save H (2019) CSR GRACE RL06 Mascon Solutions. https://doi.org/10.18738/T8/UN91VR

Schröder L, Horwath M, Dietrich R, Helm V, van den Broeke MR, Ligtenberg SRM (2019) Four decades of Antarctic surface elevation changes from multi-mission satellite altimetry. Cryosphere 13:427–449

Article
Google Scholar

Seitz F, Kirschner S, Neubersch D (2012) Determination of the Earth’s pole tide Love number k2 from observations of polar motion using an adaptive Kalman filter approach. J Geophys Res 117:B09403

Google Scholar

Seoane L, Nastula J, Bizourad C, Gambis D (2011) Hydrological excitation of polar motion derived from GRACE gravity field solutions. Int J Geophys 1:174396

Google Scholar

Shepherd A, Gilbert L, Muir AS, Konrad H, McMillan M, Slater T, Briggs KH, Sundal AV, Hogg AE, Engdahl ME (2019) Trends in Antarctic Ice Sheet elevation and mass. Geophys Res Lett 46:8174–8183

Article
Google Scholar

Su X, Shum C, Guo J, Howat I, Kuo C, Jezek K, Duan J, Yi Y (2018) High-resolution interannual mass anomalies of the antarctic ice sheet by combining GRACE Gravimetry and ENVISAT altimetry. Geosci Remote Sens 56:539–546

Article
Google Scholar

Sun Y, Riva R, Ditmar P (2016) Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models. J Geophys Res Solid Earth 1:121

Google Scholar

Swenson S, Chambers D, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res 113:B08410

Google Scholar

Velicogna I, Wahr J (2013) Time-variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophys Res Lett. 40:3055–3063

Article
Google Scholar

Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30229

Article
Google Scholar

Wahr J (2005) Polar motion models: Angular momentum approach. In: Plag HP Chao B Gross R van Dam T (eds) Proceedings of the Workshop: Forcing of polar motion in the Chandler frequency band – A contribution to understanding international climate changes. Cahiers du Centre Europeen de Geodynamique et de Seismologie, Luxembourg, p 89-102

Watkins MM, Wiese DN, Yuan DN, Boening C, Landerer FW (2015) Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J Geophys Res Solid Earth 1:120

Google Scholar

Wiese DN, Landerer FW, Watkins MM (2016) Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour Res 52:7490–7502

Article
Google Scholar

Wiese DN, Yuan DN, Boening C, Landerer FW, Watkins MM (2019) JPL GRACE and GRACE-FO Mascon Ocean, Ice, and Hydrology Equivalent Water Height Coastal Resolution Improvement (CRI) Filtered Release 06 Version 02. https://doi.org/10.5067/TEMSC-3JC62

Wilson CR, Vicente RO (1990) Maximum likelihood estimates of polar motion parameters, in Variations in Earth rotation. In: McCarthy DD Carter WE (eds) Variations in Earth rotation. AGU Geophysical Monograph Series, vol 59, Vancouver, p 151-155

Wingham DJ, Shepherd A, Muir A, Marshall GJ (2006) Mass balance of the Antarctic ice sheet. Phil Trans R Soc A 364:1627–1635

Article
Google Scholar

Yu N, Lie JC, Ray J, Chen W (2018) Improved geophysical excitation of length-of-day constrained by Earth orientation parameters and satellite gravimetry products. Geophys J Int 214:1633–1651

Article
Google Scholar

Zwally H, Li J, Robbins J, Saba J, Yi D, Brenner A (2015) Mass gains of the Antarctic ice sheet exceed losses. J Glaciol 61(230):1019–1036

Article
Google Scholar