Anderson D, Anghel A, Yumoto K, Ishitsuka M, Kudeki E (2002) Estimating daytime vertical ExB drift velocities in the equatorial F-region using ground-based magnetometer observations. Geophys Res Lett. https://doi.org/10.1029/2001gl014562
Article
Google Scholar
Butler AH, Seidel DJ, Hardiman SC, Butchart N, Birner T, Match A (2015) Defining sudden stratospheric warmings. Bull Am Meteor Soc 96(11):1913–1928. https://doi.org/10.1175/bams-d-13-00173.1
Article
Google Scholar
Chau JL, Fejer BG, Goncharenko LP (2009) Quiet variability of equatorial E × B drifts during a sudden stratospheric warming event. Geophys Res Lett 36(5):893. https://doi.org/10.1029/2008gl036785
Article
Google Scholar
Chen G, Wu C, Zhang S, Ning B, Huang X, Zhong D et al (2016) Midlatitude ionospheric responses to the 2013 SSW under high solar activity. J Geophys Res Space Phys 121(1):790–803. https://doi.org/10.1002/2015ja021980
Article
Google Scholar
Fagundes PR, Goncharenko LP, Abreu AJ, Venkatesh K, Pezzopane M, Jesus R et al (2015) Ionospheric response to the 2009 sudden stratospheric warming over the equatorial, low, and middle latitudes in the South American sector. J Geophys Res Space Phys 120(9):7889–7902. https://doi.org/10.1002/2014ja020649
Article
Google Scholar
Fang TW, Fuller-Rowell T, Akmaev R, Wu F, Wang H, Anderson D (2012) Longitudinal variation of ionospheric vertical drifts during the 2009 sudden stratospheric warming. J Geophys Res 117:A03324. https://doi.org/10.1029/2011JA017348
Article
Google Scholar
Fang TW, Fuller-Rowell T, Wang H, Akmaev R, Wu F (2014) Ionospheric response to sudden stratospheric warming events at low and high solar activity. J Geophys Res Space Phys 119:7858–7869. https://doi.org/10.1002/2014JA020142
Article
Google Scholar
Fejer BG, Olson ME, Chau JL, Stolle C, Lühr H, Goncharenko LP et al (2010) Lunar-dependent equatorial ionospheric electrodynamic effects during sudden stratospheric warmings. J Geophys Res Space Phys. https://doi.org/10.1029/2010ja015273
Article
Google Scholar
Forbes JM, Zhang X (2012) Lunar tide amplification during the January 2009 stratosphere warming event: observations and theory. J Geophys Res Space Phys. https://doi.org/10.1029/2012ja017963
Article
Google Scholar
Fuller-Rowell T, Akmaev R, Wu F, Fedrizzi M, Viereck RA, Wang H (2011) Did the January 2009 sudden stratospheric warming cool or warm the thermosphere? Geophys Res Lett. https://doi.org/10.1029/2011GL048985
Article
Google Scholar
Fuller-Rowell TJ, Fang T, Wang H, Matthias V, Hoffmann P, Hocke K, Studer S (2016) Impact of migrating tides on electrodynamics during the January 2009 sudden stratospheric warming. Ionospheric Space Weather. https://doi.org/10.1002/9781118929216.ch14
Article
Google Scholar
Goncharenko L, Zhang S (2008) Ionospheric signatures of sudden stratospheric warming: ion temperature at middle latitude. Geophys Res Lett 35(21):L15804. https://doi.org/10.1029/2008gl035684
Article
Google Scholar
Goncharenko LP, Coster AJ, Chau JL, Valladares CE (2010) Impact of sudden stratospheric warmings on equatorial ionization anomaly. J Geophys Res Space Phys. https://doi.org/10.1029/2010ja015400
Article
Google Scholar
Goncharenko L, Chau JL, Condor P, Coster A, Benkevitch L (2013) Ionospheric effects of sudden stratospheric warming during moderate-to-high solar activity: case study of January 2013. Geophys Res Lett 40(19):4982–4986. https://doi.org/10.1002/grl.50980
Article
Google Scholar
He M, Liu L, Wan W, Ning B, Zhao B, Wen J et al (2009) A study of the Weddell Sea Anomaly observed by FORMOSAT-3/COSMIC. J Geophys Res Space Phys. https://doi.org/10.1029/2009ja014175
Article
Google Scholar
He M, Chau JL, Stober G, Li G, Ning B, Hoffmann P (2018) Relations between semidiurnal tidal variants through diagnosing the zonal wavenumber using a phase differencing technique based on two ground-based detectors. J Geophys Res Atmospheres 123(8):4015–4026. https://doi.org/10.1002/2018jd028400
Article
Google Scholar
Ho CM, Mannucci AJ, Lindqwister UJ, Pi X, Tsurutani BT (1996) Global ionosphere perturbations monitored by the Worldwide GPS Network. Geophys Res Lett 23(22):3219–3222. https://doi.org/10.1029/96gl02763
Article
Google Scholar
Kane RP (1973) An estimate of the equatorial electrojet strength. J Atmos Terr Phys 35(8):1565–1567. https://doi.org/10.1016/0021-9169(73)90157-8
Article
Google Scholar
Lin CH, Lin JT, Chang LC, Liu JY, Chen CH, Chen WH et al (2012) Observations of global ionospheric responses to the 2009 stratospheric sudden warming event by FORMOSAT-3/COSMIC. J Geophys Res Space Phys. https://doi.org/10.1029/2011ja017230
Article
Google Scholar
Liu H, Yamamoto M, Ram ST, Tsugawa T, Otsuka Y, Stolle C et al (2011) Equatorial electrodynamics and neutral background in the Asian sector during the 2009 stratospheric sudden warming. J Geophys Res Space Phys. https://doi.org/10.1029/2011ja016607
Article
Google Scholar
Liu J, Zhang D-H, Hao Y-Q, Xiao Z (2019) The comparison of lunar tidal characteristics in the low-latitudinal ionosphere between East Asian and American sectors during stratospheric sudden warming events: 2009–2018. J Geophys Res Space Phys. https://doi.org/10.1029/2019ja026722
Article
Google Scholar
Liu J, Zhang D, Mo X, Xiong C, Hao Y, Xiao Z (2020) Morphological differences of the northern equatorial ionization anomaly between the Eastern Asian and American Sectors. J Geophys Res Space Phys. https://doi.org/10.1029/2019ja027506
Article
Google Scholar
Liu J, Zhang D, Goncharenko LP, Zhang S, He M, Hao Y, Xiao Z (2021) The latitudinal variation and hemispheric asymmetry of the ionospheric lunitidal signatures in the American sector during major Sudden Stratospheric Warming events. J Geophys Res Space Phys. https://doi.org/10.1029/2020ja028859
Article
Google Scholar
Manney GL, Schwartz MJ, Krüger K, Santee ML, Pawson S, Lee JN, Livesey NJ (2009) Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophys Res Lett 36(12):L12815. https://doi.org/10.1029/2009GL038586
Article
Google Scholar
Matsuno T (1971) A Dynamical Model of the Stratospheric Sudden Warming. J Atmos Sci 28(8):1479–1494. https://doi.org/10.1175/1520-0469(1971)028%3c1479:admots%3e2.0.co;2
Article
Google Scholar
Mo XH, Zhang DH (2018) Lunar tidal modulation of periodic meridional movement of equatorial ionization anomaly crest during sudden stratospheric warming. J Geophys Res Space Phys 123(2):1488–1499. https://doi.org/10.1002/2017ja024718
Article
Google Scholar
Mo X, Zhang D, Goncharenko L, Zhang S, Hao Y, Xiao Z et al (2017) Meridional movement of northern and southern equatorial ionization anomaly crests in the East-Asian sector during 2002–2003 SSW. Sci China Earth Sci 60(4):776–785. https://doi.org/10.1007/s11430-016-0096-y
Article
Google Scholar
Park J, Lühr H (2012) Effects of sudden stratospheric warming (SSW) on the lunitidal modulation of the F-region dynamo. J Geophys Res Space Phys. https://doi.org/10.1029/2012ja018035
Article
Google Scholar
Park J, Lühr H, Kunze M, Fejer BG, Min KW (2012) Effect of sudden stratospheric warming on lunar tidal modulation of the equatorial electrojet. J Geophys Res Space Phys. https://doi.org/10.1029/2011ja017351
Article
Google Scholar
Pedatella NM, Forbes JM (2010) Evidence for stratosphere sudden warming-ionosphere coupling due to vertically propagating tides. Geophys Res Lett. https://doi.org/10.1029/2010gl043560
Article
Google Scholar
Pedatella NM, Liu H-L (2013) The influence of atmospheric tide and planetary wave variability during sudden stratosphere warmings on the low latitude ionosphere. J Geophys Res Space Phys 118:5333–5347. https://doi.org/10.1002/jgra.50492
Article
Google Scholar
Pedatella NM, Maute A (2015) Impact of the semidiurnal lunar tide on the midlatitude thermospheric wind and ionosphere during sudden stratosphere warmings. J Geophys Res Space Phys 120(12):10740–10753. https://doi.org/10.1002/2015ja021986
Article
Google Scholar
Pedatella NM, Liu HL, Richmond AD (2012a) Atmospheric semidiurnal lunar tide climatology simulated by the Whole Atmosphere Community Climate Model. J Geophys Res Space Phys. https://doi.org/10.1029/2012ja017792
Article
Google Scholar
Pedatella NM, Liu H-L, Richmond AD, Maute A, Fang T-W (2012b) Simulations of solar and lunar tidal variability in the mesosphere and lower thermosphere during sudden stratosphere warmings and their influence on the low-latitude ionosphere. J Geophys Res Space Phys. https://doi.org/10.1029/2012ja017858
Article
Google Scholar
Pedatella NM, Liu H-L, Sassi F, Lei J, Chau JL, Zhang X (2014) Ionosphere variability during the 2009 SSW: influence of the lunar semidiurnal tide and mechanisms producing electron density variability. J Geophys Res Space Phys 119(5):3828–3843. https://doi.org/10.1002/2014ja019849
Article
Google Scholar
Pedatella NM, Fang T-W, Jin H, Sassi F, Schmidt H, Chau JL et al (2016) Multimodel comparison of the ionosphere variability during the 2009 sudden stratosphere warming. J Geophys Res Space Phys 121(7):7204–7225. https://doi.org/10.1002/2016ja022859
Article
Google Scholar
Penndorf, R. (1965). Antarctic Research Series, p. 1–45. https://doi.org/10.1029/ar004p0001
Rastogi RG, Klobuchar JA (1990) Ionospheric electron content within the equatorial F 2 layer anomaly belt. J Geophys Res Space Phys 95(A11):19045–19052. https://doi.org/10.1029/ja095ia11p19045
Article
Google Scholar
Rideout W, Coster A (2006) Automated GPS processing for global total electron content data. GPS Solutions 10(3):219–228. https://doi.org/10.1007/s10291-006-0029-5
Article
Google Scholar
Saito A, Fukao S, Miyazaki S (1998) High resolution mapping of TEC perturbations with the GSI GPS Network over Japan. Geophys Res Lett 25(16):3079–3082. https://doi.org/10.1029/98gl52361
Article
Google Scholar
Sathishkumar S, Sridharan S (2013) Lunar and solar tidal variabilities in mesospheric winds and EEJ strength over Tirunelveli (8.7°N, 7.78°E) during the 2009 major stratospheric warming. J Geophys Res Space Phys 118(1):533–541. https://doi.org/10.1029/2012ja018236
Article
Google Scholar
Shepherd SG (2014) Altitude-adjusted corrected geomagnetic coordinates: definition and functional approximations. J Geophys Res Space Phys 119(9):7501–7521. https://doi.org/10.1002/2014ja020264
Article
Google Scholar
Siddiqui TA, Stolle C, Lühr H (2017) Longitude-dependent lunar tidal modulation of the equatorial electrojet during stratospheric sudden warmings. J Geophys Res Space Phys 122(3):3760–3776. https://doi.org/10.1002/2016ja023609
Article
Google Scholar
Siddiqui TA, Yamazaki Y, Stolle C, Maute A, Laštovička J, Edemskiy IK et al (2021) Understanding the total electron content variability over Europe during 2009 and 2019 SSWs. J Geophys Res Space Phys. https://doi.org/10.1029/2020ja028751
Article
Google Scholar
Tang Q, Zhou C, Li Z, Liu Y, Chen G (2021) Semi-monthly lunar tide oscillation of foF2 in equatorial ionization anomaly (EIA) crests during 2014–2015 SSW. J Geophys Res Space Phys. https://doi.org/10.1029/2020ja028708
Article
Google Scholar
Tsugawa T, Saito A, Otsuka Y, Yamamoto M (2003) Damping of large-scale traveling ionospheric disturbances detected with GPS networks during the geomagnetic storm. J Geophys Res Space Phys. https://doi.org/10.1029/2002ja009433
Article
Google Scholar
Vineeth C, Pant TK, Kumar KK, Ramkumar G, Sridharan R (2009) Signatures of low latitude–high latitude coupling in the tropical MLT region during sudden stratospheric warming. Geophys Res Lett. https://doi.org/10.1029/2009gl040375
Article
Google Scholar
Xiong J, Wan W, Ding F, Liu L, Ning B, Niu X (2013) Coupling between mesosphere and ionosphere over Beijing through semidiurnal tides during the 2009 sudden stratospheric warming. J Geophys Res Space Phys 118(5):2511–2521. https://doi.org/10.1002/jgra.50280
Article
Google Scholar
Yamazaki Y, Richmond AD, Yumoto K (2012) Stratospheric warmings and the geomagnetic lunar tide: 1958–2007. J Geophys Res Space Phys. https://doi.org/10.1029/2012ja017514
Article
Google Scholar
Yamazaki Y, Stolle C, Matzka J, Siddiqui TA, Lühr H, Alken P (2017) Longitudinal variation of the lunar tide in the equatorial electrojet. J Geophys Res Space Phys 122(12):12445–12463. https://doi.org/10.1002/2017ja024601
Article
Google Scholar
Yamazaki Y, Stolle C, Siddiqui T, Laštovička J, Mošna Z, Kozubek M, Ward W, Themens D, Kristoffersen S (2020) VERA: VERtical coupling in Earth’s Atmosphere at mid and high latitudes; Final Report. Potsdam: German Research Centre for Geosciences GFZ, p. 138. https://doi.org/10.2312/GFZ.2.3.2020.001
Yue X, Schreiner WS, Lei J, Rocken C, Hunt DC, Kuo Y, Wan W (2010) Global ionospheric response observed by COSMIC satellites during the January 2009 stratospheric sudden warming event. J Geophys Res Space Phys. https://doi.org/10.1029/2010ja015466
Article
Google Scholar
Zhang DH, Xiao Z (2005) Study of ionospheric response to the 4B flare on 28 October 2003 using International GPS Service network data. J Geophys Res Space Phys. https://doi.org/10.1029/2004ja010738
Article
Google Scholar
Zhang W, Zhang DH, Xiao Z (2009) The influence of geomagnetic storms on the estimation of GPS instrumental biases. Ann Geophys 27(4):1613–1623. https://doi.org/10.5194/angeo-27-1613-2009
Article
Google Scholar
Zhang DH, Zhang W, Li Q, Shi LQ, Hao YQ, Xiao Z (2010) Accuracy analysis of the GPS instrumental bias estimated from observations in middle and low latitudes. Ann Geophys 28(8):1571–1580. https://doi.org/10.5194/angeo-28-1571-2010
Article
Google Scholar