Alken P (2016) Observations and modeling of the ionospheric gravity and diamagnetic current systems from CHAMP and Swarm measurements. J Geophys Res Space Phys 121:589–601. https://doi.org/10.1002/2015JA022163
Article
Google Scholar
Alken P, Maus S (2007) Spatio-temporal characterization of the equatorial electrojet from CHAMP, Ørsted, and SAC-C satellite magnetic measurements. J Geophys Res 112:A09305. https://doi.org/10.1029/2007JA012524
Article
Google Scholar
Alken P, Maus S, Chulliat A, Vigneron P, Sirol O, Hulot G (2015) Swarm equatorial electric field chain: first results. Geophys Res Lett 42:673–680. https://doi.org/10.1002/2014GL062658
Article
Google Scholar
Alken P, Maute A, Richmond AD (2017) The F \(F\)-region gravity and pressure gradient current systems: a review. Space Sci Rev 206(1):451–469
Article
Google Scholar
Alken P, Thébault E, Beggan CD, Amit H, Aubert J, Baerenzung J, Bondar TN, Brown W, Califf S, Chambodut A, Chulliat A, Cox G, Finlay CC, Fournier A, Gillet N, Grayver A, Hammer MD, Holschneider M, Huder L, Hulot G, Jager T, Kloss C, Korte M, Kuang W, Kuvshinov A, Langlais B, Léger JM, Lesur V, Livermore PW, Lowes FJ, Macmillan S, Magnes W, Mandea M, Marsal S, Matzka J, Metman MC, Minami T, Morschhauser A, Mound JE, Nair M, Nakano S, Olsen N, Pavón-Carrasco FJ, Petrov VG, Ropp G, Rother M, Sabaka TJ, Sanchez S, Saturnino D, Schnepf NR, Shen X, Stolle C, Tangborn A, Tøffner-Clausen L, Toh H, Torta JM, Varner J, Vervelidou F, Vigneron P, Wardinski I, Wicht J, Woods A, Zeren Z, Yang Y, Zhou B (2021) International geomagnetic reference field: the thirteenth generation. Earth Planets Space 73:49. https://doi.org/10.1186/s40623-020-01288-x
Article
Google Scholar
Baldwin MP, Ayarzaguena B, Birner T, Butchart N, Butler AH, Charlton-Perez AJ, Domeisen DIV, Garfinkel CI, Garny H, Gerber EP, Hegglin MI, Langematz U, Pedatella NM (2021) Sudden stratospheric warmings. Rev Geophys. https://doi.org/10.1029/2020RG000708
Article
Google Scholar
Campbell WH (1989) The regular geomagnetic-field variations during quiet solar conditions. In: J. A. Jacobs (Ed.), Geomagnetism, Volume 3, 385–460
Campbell WH (1990) Differences in geomagnetic Sq field representations due to variations in spherical harmonic analysis techniques. J Geophys Res Space Phys 95(A12):20923–20936
Article
Google Scholar
Campbell WH, Matsushita S (1982) Sq currents: a comparison of quiet and active year behavior. J Geophys Res Space Phys 87(A7):5305–5308
Article
Google Scholar
Campbell WH, Schiffmacher ER (1985) Quiet ionospheric currents of the northern hemisphere derived from geomagnetic field records. J Geophys Res Space Phys 90(A7):6475–6486
Article
Google Scholar
Campbell WH, Schiffmacher ER (1988) Quiet ionospheric currents of the southern hemisphere derived from geomagnetic records. J Geophys Res Space Phys 93(A2):933–944
Article
Google Scholar
Campbell WH, Arora BR, Schiffmacher ER (1993) External Sq currents in the India-Siberia region. J Geophys Res Space Phys 98(A3):3741–3752
Article
Google Scholar
Çelik C (2013) The solar daily geomagnetic variation and its dependence on sunspot number. J Atmos Solar Terr Phys 104:75–86
Article
Google Scholar
Çelik C (2014) The lunar daily geomagnetic variation and its dependence on sunspot number. J Atmos Solar Terr Phys 119:153–161
Article
Google Scholar
Çelik C (2018) Wolf ratios and the ionospheric L and S dynamo region. J Atmos Solar Terr Phys 173:23–27
Article
Google Scholar
Chapman S (1951) The equatorial electrojet as detected from the abnormal electric current distribution above Huancayo, Peru, and elsewhere. Archiv Fuer Meteorologie, Geophysik und Bioklimatologie, Serie A 4(1):368–390
Article
Google Scholar
Chapman S, Bartels J (1940) Geomagnetism, vol 1. Oxford University Press, Oxford, pp 214–243
Google Scholar
Chapman S, Miller JCP (1940) The statistical determination of lunar daily variations in geomagnetic and meteorological elements. Geophys Suppl Monthly Notices Royal Astron Soc 4(9):649–669
Google Scholar
Chulliat A, Vigneron P, Hulot G (2016) First results from the Swarm dedicated ionospheric field inversion chain. Earth, Planets and Space 68(1):1–18
Article
Google Scholar
Efron B (1981) Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika 68(3):589–599
Article
Google Scholar
Emmert JT, Richmond AD, Drob DP (2010) A computationally compact representation of Magnetic-Apex and Quasi!Dipole coordinates with smooth base vectors. J Geophys Res. 115:A08322. https://doi.org/10.1029/2010JA015326
Article
Google Scholar
Fejer BG, Olson ME, Chau JL, Stolle C, Lühr H, Goncharenko LP, Yumoto K, Nagatsuma, T. (2010). Lunar-dependent equatorial ionospheric electrodynamic effects during sudden stratospheric warmings. J Geophys Res Space Physics, 115(A8)
Finlay CC, Kloss C, Olsen N, Hammer MD, Tøffner-Clausen L, Grayver A, Kuvshinov A (2020) The CHAOS-7 geomagnetic field model and observed changes in the South Atlantic Anomaly. Earth, Planets and Space 72(1):1–31. https://doi.org/10.1186/s40623-020-01252-9
Article
Google Scholar
Forbes JM, Lindzen RS (1976) Atmospheric solar tides and their electrodynamic effects-I. The global Sq current system. J Atmos Terr Phys 38(9–10):897–910
Article
Google Scholar
Forbes JM, Zhang X, Palo S, Russell J, Mertens CJ, Mlynczak M (2008) Tidal variability in the ionospheric dynamo region. J Geophys Res Space Phys, 113(A2)
Friis-Christensen E, Lühr H, Hulot G (2006) Swarm: a constellation to study the Earth’s magnetic field. Earth, Planets and Space 58(4):351–358. https://doi.org/10.1186/BF03351933.pdf
Article
Google Scholar
Friis-Christensen E, Lühr H, Knudsen D, Haagmans R (2008) Swarm-an Earth observation mission investigating geospace. Adv Space Res 41(1):210–216
Article
Google Scholar
Fukushima N (1979) Electric potential difference between conjugate points in middle latitudes caused by asymmetric dynamo in the ionosphere. J Geomagn geoelectr 31(3):401–409
Article
Google Scholar
Grayver AV, Olsen N (2019) The magnetic signatures of the M 2, N 2, and O 1 oceanic tides observed in Swarm and CHAMP satellite magnetic data. Geophys Res Lett 46(8):4230–4238
Article
Google Scholar
Hagan ME, Roble RG, Hackney J (2001) Migrating thermospheric tides. J Geophys Res Space Phys 106(A7):12739–12752
Article
Google Scholar
Haines GV, Torta JM (1994) Determination of equivalent current sources from spherical cap harmonic models of geomagnetic field variations. Geophys J Int 118(3):499–514
Article
Google Scholar
Heelis RA (2004) Electrodynamics in the low and middle latitude ionosphere: a tutorial. J Atmos Solar Terr Phys 66(10):825–838
Article
Google Scholar
Koch S, Kuvshinov A (2013) Global 3-D EM inversion of Sq variations based on simultaneous source and conductivity determination: concept validation and resolution studies. Geophys J Int 195(1):98–116
Article
Google Scholar
Koch S, Kuvshinov A (2015) 3-D EM inversion of ground based geomagnetic Sq data. Results from the analysis of Australian array (AWAGS) data. Geophys J Int 200(3):1284–1296
Article
Google Scholar
Kuvshinov A, Manoj C, Olsen N, Sabaka T (2007) On induction effects of geomagnetic daily variations from equatorial electrojet and solar quiet sources at low and middle latitudes. J Geophys Res Solid Earth 112:B10102
Article
Google Scholar
Kuvshinov A, Grayver A, Tøffner-Clausen L, Olsen N (2021) Probing 3-D electrical conductivity of the mantle using 6 years of Swarm, CryoSat-2 and observatory magnetic data and exploiting matrix Q-responses approach. Earth, Planets and Space 73(1):1–26. https://doi.org/10.1186/s40623-020-01341-9
Article
Google Scholar
Laundal KM, Richmond AD (2017) Magnetic coordinate systems. Space Sci Rev 206(1):27–59
Article
Google Scholar
Laundal KM, Finlay CC, Olsen N, Reistad JP (2018) Solar wind and seasonal influence on ionospheric currents from Swarm and CHAMP measurements. J Geophys Res Space Physics 123(5):4402–4429
Article
Google Scholar
Leger JM, Bertrand F, Jager T, Le Prado M, Fratter I, Lalaurie JC (2009) Swarm absolute scalar and vector magnetometer based on helium 4 optical pumping. Procedia Chem 1(1):634–637
Article
Google Scholar
Le Sager P, Huang TS (2002) Ionospheric currents and field-aligned currents generated by dynamo action in an asymmetric Earth magnetic field. J Geophys Res Space Phys 107(A2):SIA-4
Article
Google Scholar
Lindzen RS, Chapman S (1969) Atmospheric tides. Space Sci Rev 10(1):3–188
Article
Google Scholar
Lühr H, Maus S (2006) Direct observation of the F region dynamo currents and the spatial structure of the EEJ by CHAMP. Geophysical research letters, 33(24)
Lühr H, Rother M, Maus S, Mai W, Cooke D (2003) The diamagnetic effect of the equatorial Appleton anomaly: Its characteristics and impact on geomagnetic field modeling. Geophysical Research Letters, 30(17)
Lühr H, Maus S, Rother M (2004) Noon-time equatorial electrojet: Its spatial features as determined by the CHAMP satellite. J Geophys Res Space Phys. 109(A1)
Lühr H, Kervalishvili G, Michaelis I, Rauberg J, Ritter P, Park J, Merayo JMG, Brauer P (2015) The interhemispheric and F region dynamo currents revisited with the Swarm constellation. Geophys Res Lett 42(9):3069–3075
Article
Google Scholar
Lühr H, Xiong C, Olsen N, Le G (2017) Near-Earth magnetic field effects of large-scale magnetospheric currents. Space Sci Rev 206(1):521–545
Article
Google Scholar
Lühr H, Kervalishvili GN, Stolle C, Rauberg J, Michaelis I (2019) Average characteristics of low-latitude interhemispheric and F region dynamo currents deduced from the swarm satellite constellation. J Geophys Res Space Phys 124(12):10631–10644
Article
Google Scholar
Malin SRC (1970) Separation of lunar daily geomagnetic variations into parts of ionospheric and oceanic origin. Geophys J Int 21(5):447–455
Article
Google Scholar
Malin SR (1973) Worldwide distribution of geomagnetic tides. Philos Trans Royal Soc London. 274(1243):551–594
Google Scholar
Matsushita S (1968) Sq and L current systems in the ionosphere. Geophys J Int 15(1–2):109–125
Google Scholar
Matsushita S, Maeda H (1965a) On the geomagnetic solar quiet daily variation field during the IGY. J Geophys Res 70(11):2535–2558
Article
Google Scholar
Matsushita S, Maeda H (1965b) On the geomagnetic lunar daily variation field. J Geophys Res 70(11):2559–2578
Article
Google Scholar
Matsushita S, Xu WY (1984) Seasonal variations of L equivalent current systems. J Geophys Res Space Phys 89(A1):285–294
Article
Google Scholar
Matzka J, Stolle C, Yamazaki Y, Bronkalla O, Morschhauser A (2021) The geomagnetic Kp index and derived indices of geomagnetic activity. Space Weather, 19(5):e2020SW002641
Article
Google Scholar
Matzka J, Bronkalla O, Kervalishvili G, Rauberg J, Yamazaki Y (2022) Geomagnetic Hpo index. V. 2.0. GFZ Data Services. https://doi.org/10.5880/Hpo.0002
Maus S, Rother M, Hemant K, Stolle C, Lühr H, Kuvshinov A, Olsen N (2006) Earth’s lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements. Geophys J Int 164(2):319–30
Article
Google Scholar
Maus S, Lühr H (2006) A gravity-driven electric current in the Earth’s ionosphere identified in CHAMP satellite magnetic measurements. Geophys Res Lett. 33(2)
Maute A, Richmond AD (2017) \(F\)-region dynamo simulations at low and mid-latitude. Space Sci Rev 206(1):471–493
Article
Google Scholar
Miyahara S, Ooishi M (1997) Variation of Sq induced by atmospheric tides simulated by a middle atmosphere general circulation model. J Geomagn Geoelectr. 49(1):77–87
Article
Google Scholar
Oberheide J, Pedatella NM, Gan Q, Kumari K, Burns AG, Eastes RW (2020) Thermospheric composition O/N response to an altered meridional mean circulation during sudden stratospheric warmings observed by GOLD. Geophys Res Lett. 47(1):e2019GL086313
Article
Google Scholar
Olsen N (1993) The solar cycle variability of lunar and solar daily geomagnetic variations. Annales Geophysicae 11(4):254–262
Google Scholar
Olsen N (1997) Ionospheric F region currents at middle and low latitudes estimated from Magsat data. J Geophys Res Space Phys 102(A3):4563–4576
Article
Google Scholar
Olsen N, Stolle C (2012) Satellite geomagnetism. Annu Rev Earth Planet Sci 40:441–465
Article
Google Scholar
Olsen N, Albini G, Bouffard J, Parrinello T, Tøffner-Clausen L (2020) Magnetic observations from CryoSat-2: calibration and processing of satellite platform magnetometer data. Earth, Planets and Space 72(1):1–18. https://doi.org/10.1186/s40623-020-01171-9
Article
Google Scholar
Owolabi C, Ruan H, Yamazaki Y, Kaka RO, Akinola, OO, Yoshikawa A (2022) Ionospheric current variations by empirical orthogonal function analysis: solar activity dependence and longitudinal differences. J Geophys Res Space Phys, 127(1):e2021JA029903
Article
Google Scholar
Park J, Lühr H, Min KW (2010) Characteristics of F-region dynamo currents deduced from CHAMP magnetic field measurements. J Geophys Res Space Phys. 115(A10)
Park J, Lühr H, Min K (2011) Climatology of the inter-hemispheric field-aligned current system in the equatorial ionosphere as observed by CHAMP. Annales Geophysicae 29(3):573–582
Article
Google Scholar
Park J, Yamazaki Y, Lühr H (2020a) Latitude dependence of Interhemispheric Field-Aligned Currents (IHFACs) as observed by the Swarm constellation. J Geophys Res Space Phys, 125(2):e2019JA027694
Article
Google Scholar
Park J, Stolle C, Yamazaki Y, Rauberg J, Michaelis I, Olsen N (2020) Diagnosing low-/mid-latitude ionospheric currents using platform magnetometers: CryoSat-2 and GRACE-FO. Earth, Planets and Space 72(1):1–18
Article
Google Scholar
Paulino AR, Batista PP, Batista IS (2013) A global view of the atmospheric lunar semidiurnal tide. J Geophys Res Atmos 118(23):13–128
Article
Google Scholar
Pedatella NM (2014) Observations and simulations of the ionospheric lunar tide: seasonal variability. J Geophys Res Space Phys 119(7):5800–5806
Article
Google Scholar
Pedatella NM, Forbes JM, Richmond AD (2011) Seasonal and longitudinal variations of the solar quiet (Sq) current system during solar minimum determined by CHAMP satellite magnetic field observations. Journal of Geophysical Research: Space Physics, 116(A4)
Pedatella NM, Liu HL, Richmond AD (2012a) Atmospheric semidiurnal lunar tide climatology simulated by the Whole Atmosphere Community Climate Model. Journal of Geophysical Research: Space Physics, 117(A6)
Pedatella NM, Liu HL, Richmond AD, Maute A, Fang TW (2012b) Simulations of solar and lunar tidal variability in the mesosphere and lower thermosphere during sudden stratosphere warmings and their influence on the low-latitude ionosphere. J Geophys Res Space Phys. 117(A8)
Pfaff R, Larsen M, Abe T, Habu H, Clemmons J, Freudenreich H, Rowland D, Bullett T, Yamamoto MY, Watanabe S, Kakinami Y, Yokoyama T, Mabie J, Klenzing J, Bishop R, Walterscheid R, Yamamoto M, Yamazaki Y, Murphy N, Angelopoulos V (2020) Daytime dynamo electrodynamics with spiral currents driven by strong winds revealed by vapor trails and sounding rocket probes. Geophys Res Lett. 47(15):e2020GL088803
Article
Google Scholar
Rao J, Ren R, Chen H, Yu Y, Zhou Y (2018) The stratospheric sudden warming event in February 2018 and its prediction by a climate system model. J Geophys Res Atmos 123(23):13–332
Article
Google Scholar
Rastogi RG, Trivedi NB (1970) Luni-solar tides in H at stations within the equatorial electrojet. Planet Space Sci. 18(3):367–77
Article
Google Scholar
Reigber C, Lühr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30(2):129–134
Article
Google Scholar
Richmond AD (1995) Ionospheric electrodynamics. In: Volland H (ed) Handbook of atmospheric electrodynamics, vol 2. CRC Press, Boca Raton, pp 249–290
Google Scholar
Richmond AD (1995) Ionospheric electrodynamics using magnetic apex coordinates. J Geomagn Geoelectr 47(2):191–212
Article
Google Scholar
Richmond AD (2011) Electrodynamics of ionosphere-thermosphere coupling. In: Abdu MA, Pancheva D (eds) Aeronomy of the Earth’s atmosphere and ionosphere. Springer, Dordrecht, pp 191–201
Chapter
Google Scholar
Richmond AD, Roble RG (1987) Electrodynamic effects of thermospheric winds from the NCAR thermospheric general circulation model. J Geophys Res Space Phys 92(A11):12365–12376
Article
Google Scholar
Richmond AD, Matsushita S, Tarpley JD (1976) On the production mechanism of electric currents and fields in the ionosphere. J Geophys Res 81(4):547–555
Article
Google Scholar
Rishbeth H (1981) The F-region dynamo. J Atmos Terr Phys. 43(5–6):387–92
Article
Google Scholar
Rodríguez-Zuluaga J, Stolle C (2019) Interhemispheric field-aligned currents at the edges of equatorial plasma depletions. Sci Rep 9(1):1–8
Article
Google Scholar
Sabaka TJ, Olsen N, Langel RA (2002) A comprehensive model of the quiet-time, near-Earth magnetic field: phase 3. Geophys J Int 151(1):32–68
Article
Google Scholar
Sabaka TJ, Tøffner-Clausen L, Olsen N, Finlay CC (2018) A comprehensive model of Earth’s magnetic field determined from 4 years of Swarm satellite observations. Earth, Planets and Space 70(1):1–26. https://doi.org/10.1186/s40623-018-0896-3
Article
Google Scholar
Saynisch-Wagner J, Baerenzung J, Hornschild A, Irrgang C, Thomas M (2021) Tide-induced magnetic signals and their errors derived from CHAMP and Swarm satellite magnetometer observations. Earth, Planets and Space 73(1):1–11. https://doi.org/10.1186/s40623-021-01557-3
Article
Google Scholar
Schnepf NR, Manoj C, Kuvshinov A, Toh H, Maus S (2014) Tidal signals in ocean-bottom magnetic measurements of the Northwestern Pacific: observation versus prediction. Geophys J Int 198(2):1096–1110
Article
Google Scholar
Stening RJ (1971) Longitude and seasonal variations of the Sq current system. Radio Sci 6(2):133–137
Article
Google Scholar
Stening RJ (1995) What drives the equatorial electrojet? J Atmos Terr Phys 57(10):1117–1128
Article
Google Scholar
Stening RJ, Winch DE (1979) Seasonal changes in the global lunar geomagnetic variation. J Atmos Terr Phys 41(3):311–323
Article
Google Scholar
Stening RJ, Winch DE (2013) The ionospheric Sq current system obtained by spherical harmonic analysis. J Geophys Res Space Phys 118(3):1288–1297
Article
Google Scholar
Stening RJ, Forbes JM, Hagan ME, Richmond AD (1997) Experiments with a lunar atmospheric tidal model. J Geophys Res Atmos 102(D12):13465–13471
Article
Google Scholar
Stolle C, Michaelis I, Rauberg J (2016) The role of high-resolution geomagnetic field models for investigating ionospheric currents at low Earth orbit satellites. Earth, Planets and Space 68(1):1–10. https://doi.org/10.1186/s40623-016-0494-1
Article
Google Scholar
Stolle C, Michaelis I, Xiong C, Rother M, Usbeck T, Yamazaki Y, Rauberg J, Styp-Rekowski K (2021) Observing Earth’s magnetic environment with the GRACE-FO mission. Earth, Planets and Space 73(1):1–21. https://doi.org/10.1186/s40623-021-01364-w
Article
Google Scholar
Sugiura M, Fanselau G (1966) Lunar phase numbers \(\nu\) and \(\nu\)’ for years 1850 to 2050 (U.S. NASA Goddard Space Flight Center, Report X-612-66-401)
Takeda M (1990) Geomagnetic field variation and the equivalent current system generated by an ionospheric dynamo at the solstice. J Atmos Terr Phys 52(1):59–67
Article
Google Scholar
Takeda M (1999) Time variation of global geomagnetic Sq field in 1964 and 1980. J Atmos Solar Terr Phys 61(10):765–774
Article
Google Scholar
Takeda M (2002) Features of global geomagnetic Sq field from 1980 to 1990. J Geophys Res Space Phys 107(A9):SIA-4
Article
Google Scholar
Takeda M, Maeda H (1980) Three-dimensional structure of ionospheric currents 1. Currents caused by diurnal tidal winds. J Geophys Res Space Phys 85(A12):6895–6899
Article
Google Scholar
Tapping KF (2013) The 10.7 cm solar radio flux (F10.7). Space Weather 11(7):394–406
Article
Google Scholar
Tarpley JD (1970) The ionospheric wind dynamo-I: Lunar tide. Planet Space Sci 18(7):1075–1090
Article
Google Scholar
Thébault E, Vigneron P, Langlais B, Hulot G (2016) A Swarm lithospheric magnetic field model to SH degree 80. Earth, Planets and Space 68(1):1–13. https://doi.org/10.1186/s40623-016-0510-5
Article
Google Scholar
Turner J, Winch D, Ivers D, Stening R (2005) Analysis of satellite magnetic data. Explor Geophys 36(3):317–321
Article
Google Scholar
Turner JPR, Winch DE, Ivers DJ, Stening RJ (2007) Regular daily variations in satellite magnetic total intensity data. Annales Geophysicae 25(10):2167–2174
Article
Google Scholar
Tyler RH, Maus S, Luhr H (2003) Satellite observations of magnetic fields due to ocean tidal flow. Science 299(5604):239–241
Article
Google Scholar
van Sabben D (1966) Magnetospheric currents, associated with the NS asymmetry of Sq. J Atmos Terr Phys 28(10):965–982
Article
Google Scholar
Vial F, Forbes JM (1994) Monthly simulations of the lunar semi-diurnal tide. J Atmos Terr Phys 56(12):1591–1607
Article
Google Scholar
Wagner CU, Möhlmann D, Schäfer K, Mishin VM, Matveev MI (1980) Large-scale electric fields and currents and related geomagnetic variations in the quiet plasmasphere. Space Sci Rev 26(4):391–446
Article
Google Scholar
Xiong C, Lühr H, Wang H, Johnsen MG (2014) Determining the boundaries of the auroral oval from CHAMP field-aligned current signatures-Part 1. Annales Geophysicae 32(6):609–622
Article
Google Scholar
Yamashita S, Iyemori T (2002) Seasonal and local time dependences of the interhemispheric field-aligned currents deduced from the Ørsted satellite and the ground geomagnetic observations. J Geophys Res Space Phys, 107(A11):SIA-11
Article
Google Scholar
Yamazaki Y (2014) Solar and lunar ionospheric electrodynamic effects during stratospheric sudden warmings. J Atmos Solar Terr Phys 119:138–146
Article
Google Scholar
Yamazaki Y, Maute A (2017) Sq and EEJ-A review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents. Space Sci Rev 206(1):299–405. https://doi.org/10.1007/s11214-016-0282-z
Article
Google Scholar
Yamazaki Y, Yumoto K, Cardinal MG, Fraser BJ, Hattori P, Kakinami Y, Liu JY, Lynn KJW, Marshall R, McNamara D, Nagatsuma T, Nikiforov VM, Otadoy RE, Ruhimat M, Shevtsov BM, Shiokawa K, Abe S, Uozumi T, Yoshikawa A (2011) An empirical model of the quiet daily geomagnetic field variation. J Geophys Res. 116:A10312. https://doi.org/10.1029/2011JA016487
Article
Google Scholar
Yamazaki Y, Richmond AD, Maute A, Wu Q, Ortland DA, Yoshikawa A, Adimula IA, Rabiu B, Kunitake M, Tsugawa T (2014) Ground magnetic effects of the equatorial electrojet simulated by the TIE-GCM driven by TIMED satellite data. J Geophys Res Space Phys. https://doi.org/10.1002/2013JA019487
Article
Google Scholar
Yamazaki Y, Stolle C, Matzka J, Siddiqui TA, Lühr H, Alken P (2017) Longitudinal variation of the lunar tide in the equatorial electrojet. J Geophys Res Space Phys 122(12):12–445
Article
Google Scholar
Yamazaki Y, Stolle C, Siddiqui T, Laštovička J, Mošna Z, Kozubek M, Ward W, Themens DR, Kristoffersen S (2020) VERA: VERtical coupling in Earth’s Atmosphere at mid and high latitudes – Final Report, Potsdam, German Research Centre for Geosciences GFZ, pp 138, https://doi.org/10.2312/GFZ.2.3.2020.001
Yamazaki Y, Matzka J, Stolle C, Kervalishvili G, Rauberg J, Bronkalla O, Morschhauser A, Bruinsma S, Shprits YY, Jackson DR (2022) Geomagnetic activity index Hpo, Geophys Res Lett 49:e2022GL098860. https://doi.org/10.1029/2022GL098860
Zhang JT, Forbes JM (2013) Lunar tidal winds between 80 and 110 km from UARS/HRDI wind measurements. J Geophys Rese Space Phys 118(8):5296–5304
Article
Google Scholar
Zhang X, Forbes JM (2014) Lunar tide in the thermosphere and weakening of the northern polar vortex. Geophys Res Lett 41(23):8201–8207
Article
Google Scholar