Abbondanza C, Chin TM, Gross RS, Heflin MB, Parker JW, Soja BS, van Dam T, Wu X (2017) JTRF2014, the JPL Kalman filter and smoother realization of the International Terrestrial Reference System. J Geophys Res Solid Earth 122(10):8474–8510. https://doi.org/10.1002/2017JB014360
Article
Google Scholar
Ablain M, Meyssignac B, Zawadzki L, Jugier R, Ribes A, Spada G, Benveniste J, Cazenave A, Picot N (2019) Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration. Earth Syst Sci Data 11(3):1189–1202. https://doi.org/10.5194/essd-11-1189-2019
Article
Google Scholar
Altamimi Z, Collilieux X (2013) Reference frames for applications in geosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32998-2
Altamimi Z, Rebischung P, Collilieux X, Metivier L, Chanard K (2021) ITRF2020: from data analysis to results. Paper presented at the AGU Fall Meeting 2021, New Orleans, LA, 13–17 December 2021
Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res Solid Earth 121(8):6109–6131. https://doi.org/10.1002/2016JB013098
Article
Google Scholar
Altamimi Z, Rebischung P, Collilieux X, Métivier L, Chanard K (2022) ITRF2020: An augmented reference frame refining the modeling of nonlinear station motions, submitted
Anderson J, Beyerle G, Glaser S, Liu L, Männel B, Nilsson T, Heinkelmann R, Schuh H (2018) Simulations of VLBI observations of a geodetic satellite providing co-location in space. J Geod 92(9):1023–1046. https://doi.org/10.1007/s00190-018-1115-5
Article
Google Scholar
Appleby G, Rodríguez J, Altamimi Z (2016) Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993–2014. J Geod 90(12):1371–1388. https://doi.org/10.1007/s00190-016-0929-2
Article
Google Scholar
Argus DF, Fu Y, Landerer FW (2014) Seasonal variation in total water storage in California inferred from GPS observations of vertical land motion. Geophys Res Lett 41(6):1971–1980. https://doi.org/10.1002/2014GL059570
Article
Google Scholar
Argus DF, Peltier WR, Blewitt G, Kreemer C (2021) The viscosity of the top third of the lower mantle estimated using GPS, GRACE, and relative sea level measurements of glacial isostatic adjustment. J Geophys Res Solid Earth 126(5):e2020JB021537. https://doi.org/10.1029/2020JB021537
Article
Google Scholar
Arnold D, Montenbruck O, Hackel S, Sośnica K (2019) Satellite laser ranging to low Earth orbiters: orbit and network validation. J Geod 93(11):2315–2334. https://doi.org/10.1007/s00190-018-1140-4
Article
Google Scholar
Bar-Sever Y (1998) Estimation of the GPS transmit phase center offset. Eos Trans AGU 79(45):183
Google Scholar
Bar-Sever YE, Haines B, Wu S, Lemoine F, Willis P (2009) Geodetic Reference Antenna in Space (GRASP): A Mission to Enhance the Terrestrial Reference Frame. Paper presented at the COSPAR Colloquium – Scientific and Fundamental Aspects of the Galileo Programme, University of Padova, Padua, Italy, 14–16 October 2009. https://gssc.esa.int/education/galileo-science-colloquium/
Beckley BD, Lemoine FG, Luthcke SB, Ray RD, Zelensky NP (2007) A reassessment of global and regional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference frame and orbits. Geophys Res Lett 34(14):L14608. https://doi.org/10.1029/2007GL030002
Article
Google Scholar
Belli A, Exertier P, Samain E, Courde C, Vernotte F, Jayles C, Auriol A (2016) Temperature, radiation and aging analysis of the DORIS Ultra Stable Oscillator by means of the Time Transfer by Laser Link experiment on Jason-2. Adv Space Res 58(12):2589–2600. https://doi.org/10.1016/j.asr.2015.11.025
Article
Google Scholar
Beloy K, Bodine MI, Bothwell T, Brewer SM, Bromley SL, Chen J-S, Deschênes J-D, Diddams SA, Fasano RJ, Fortier TM, Hassan YS, Hume DB, Kedar D, Kennedy CJ, Khader I, Koepke A, Leibrandt DR, Leopardi H, Ludlow AD, McGrew WF, Milner WR, Newbury NR, Nicolodi D, Oelker E, Parker TE, Robinson JM, Romisch S, Schäffer SA, Sherman JA, Sinclair LC, Sonderhouse L, Swann WC, Yao J, Ye J, Zhang X, Network Boulder Atomic Clock Optical, (BACON) Collaboration (2021) Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature 591(7851):564–569. https://doi.org/10.1038/s41586-021-03253-4
Article
Google Scholar
Bertiger W, Desai SD, Dorsey A, Haines BJ, Harvey N, Kuang D, Sibthorpe A, Weiss JP (2010) Sub-centimeter precision orbit determination with GPS for ocean altimetry. Mar Geodesy 33(sup1):363–378. https://doi.org/10.1080/01490419.2010.487800
Article
Google Scholar
Biancale R et al. (2017) E-GRASP/Eratosthenes. Proposal for Earth Explorer Opportunity Mission EE-9 in response to the Call for Proposals for Earth Explorer Opportunity Mission EE-9, unpublished
Blazquez A, Meyssignac B (2022) The importance of an accurate geocenter motion in the Earth’s water and energy budgets estimated by gravimetry. Paper presented at the GENESIS-1 Online Workshop: Co-location of Geodetic Techniques in Space, Online, 26 April 2022. https://genesis-1.sciencesconf.org/data/09_2204_GENESIS_1_AB_BM_geocenter_in_water_energy.pdf
Blazquez A, Meyssignac B, Lemoine JM, Berthier E, Ribes A, Cazenave A (2018) Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface: implications for the global water and sea level budgets. Geophys J Int 215(1):415–430. https://doi.org/10.1093/gji/ggy293
Article
Google Scholar
Blewitt G, Altamimi Z, Davis J, Gross R, Kuo C-Y, Lemoine FG, Moore AW, Neilan RE, Plag H-P, Rothacher M, Shum CK, Sideris MG, Schöne T, Tregoning P, Zerbini S (2010) Geodetic observations and global reference frame contributions to understanding sea-level rise and variability. In Church JA, Woodworth PL, Aarup T, Wilson WS (eds) Understanding sea-level rise and variability, Blackwell Publishing Ltd. https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781444323276.ch9
Bloßfeld M, Rudenko S, Kehm A, Panafidina N, Müller H, Angermann D, Hugentobler U, Seitz M (2018) Consistent estimation of geodetic parameters from SLR satellite constellation measurements. J Geod 92:1003–1021. https://doi.org/10.1007/s00190-018-1166-7
Article
Google Scholar
Bothwell T, Kedar D, Oelker E, Robinson JM, Bromley SL, Tew WL, Ye J, Kennedy CJ (2019) JILA SrI optical lattice clock with uncertainty of \(2.0 \times 10^{-18}\). Metrologia 56(6):065004. https://doi.org/10.1088/1681-7575/ab4089
Article
Google Scholar
Brewer SM, Chen J-S, Hankin AM, Clements ER, Chou CW, Wineland DJ, Hume DB, Leibrandt DR (2019) \(^{27}{\rm Al }^{+}\) quantum-logic clock with a systematic uncertainty below \({10}^{-18}\). Phys Rev Lett 123:033201. https://doi.org/10.1103/PhysRevLett.123.033201
Article
Google Scholar
Cacciapuoti L, Armano M, Much R, Sy O, Helm A, Hess MP, Kehrer J, Koller S, Niedermaier T, Esnault FX, Massonnet D, Goujon D, Pittet J, Rochat P, Liu S, Schaefer W, Schwall T, Prochazka I, Schlicht A, Schreiber U, Delva P, Guerlin C, Laurent P, le Poncin-Lafitte C, Lilley M, Savalle E, Wolf P, Meynadier F, Salomon C (2020) Testing gravity with cold-atom clocks in space. Eur Phys J D 74(8):164. https://doi.org/10.1140/epjd/e2020-10167-7
Article
Google Scholar
Cardellach E, Elosegui P, Davis JL (2007) Global distortion of GPS networks associated with satellite antenna model errors. J Geophys Res Solid Earth 112(B7):B07405. https://doi.org/10.1029/2006JB004675
Article
Google Scholar
Cazenave A, Meyssignac B, Ablain M, Balmaseda M, Bamber J, Barletta VR, Beckley B, Benveniste J, Berthier E, Blazquez A, Boyer T, Caceres D, Chambers D, Champollion N, Chao B, Chen JL, Cheng L, Church JA, Chuter S, Cogley G, Dangendorf S, Desbruyères DG, Doll P, Domingues CM, Falk U, Famiglietti J, Fenoglio-Marc L, Galassi G, Gardner A, Groh A, Hamlington B, Hogg A, Horwath M, Humphrey V, Husson L, Ishii M, Jaeggi Jevrejeva S, Johnson GC, Kolodziejczyk Kusche J, Lambeck K, Landerer FW, Leclercq P, Legrésy B, Leuliette E, Llovel W, Longuevergne L, Loomis BD, Luthcke S, Marcos M, Marzeion B, Merchant CJ, Merrifield MA, Milne G, Mitchum GT, Mohajeani Monier, Monselesan D, Nerem Palanisamy H, Paul F, Perez B, Piecuch CG, Ponte RM, Purkey SG, Reager JT, Rietbroek R, Rignot E, Riva R, Roemmich Sorensen LS, Sasgen I, Schrama Seneviratne S, Shum CK, Spada G, Stammer D, Van De Wal R, Velicogna I, von Schuckmann K, Wada Y, Wang J, Watson C, Wiese DN, Wijffels S, Westaway RM, Woppelmann G, Wouters B (2018) Global sea-level budget 1993-present. Earth Syst Sci Data 10(3):1551–1590. https://doi.org/10.5194/essd-10-1551-2018
Article
Google Scholar
Cerri L, Berthias JP, Bertiger WI, Haines BJ, Lemoine FG, Mercier F, Ries JC, Willis P, Zelensky NP, Ziebart M (2010) Precision orbit determination standards for the Jason series of altimeter missions. Mar Geodesy 33(sup1):379–418. https://doi.org/10.1080/01490419.2010.488966
Article
Google Scholar
Cerri L, Lemoine JM, Mercier F, Zelensky NP, Lemoine FG (2013) DORIS-based point mascons for the long term stability of precise orbit solutions. Adv Space Res 52(3):466–476. https://doi.org/10.1016/j.asr.2013.03.023
Article
Google Scholar
Charlot P, Jacobs CS, Gordon D, Lambert S, de Witt A, Böhm J, Fey AL, Heinkelmann R, Skurikhina E, Titov O, Arias EF, Bolotin S, Bourda G, Ma C, Malkin Z, Nothnagel A, Mayer D, MacMillan DS, Nilsson T, Gaume R (2020) The third realization of the International Celestial Reference Frame by very long baseline interferometry. Astron Astrophys 644:A159. https://doi.org/10.1051/0004-6361/202038368
Article
Google Scholar
Chen J, Ries JC, Tapley BD (2021) Assessment of degree-2 order-1 gravitational changes from GRACE and GRACE Follow-on, Earth rotation, satellite laser ranging, and models. J Geod 95(4):38. https://doi.org/10.1007/s00190-021-01492-x
Article
Google Scholar
Cheng MK, Ries JC (2018) Monthly estimates of C20 from 5 SLR satellites based on GRACE RL05 models. GRACE Technical Note TN-07. ftp://isdcftp.gfz-potsdam.de/grace/DOCUMENTS/TECHNICAL_NOTES/TN-07_C20_SLR_RL05.txt (accessed on 09 December 2022)
Choi K-R, Ries JC, Tapley BD (2004) Jason-1 precision orbit determination by combining SLR and DORIS with GPS tracking data. Mar Geodesy 27(1–2):319–331. https://doi.org/10.1080/01490410490465652
Article
Google Scholar
Ciufolini I, Paolozzi A, Pavlis EC, Sindoni G, König R, Ries JC, Matner R, Gurzadyan V, Penrose R, Rubincam D, Paris C (2017) Eur Phys J Plus 132(8):336. https://doi.org/10.1140/epjp/i2017-11635-1
Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2009) Effect of the satellite laser ranging network distribution on geocenter motion estimation. J Geophys Res Solid Earth 114(B4):B04402. https://doi.org/10.1029/2008JB005727
Article
Google Scholar
Collilieux X, Wöppelmann G (2011) Global sea-level rise and its relation to the terrestrial reference frame. J Geod 85(1):9–22. https://doi.org/10.1007/s00190-010-0412-4
Article
Google Scholar
Couhert A, Cerri L, Legeais J-F, Ablain M, Zelensky NP, Haines BJ, Lemoine FG, Bertiger WI, Desai SD, Otten M (2015) Towards the 1mm/y stability of the radial orbit error at regional scales. Adv Space Res 55(1):2–23. https://doi.org/10.1016/j.asr.2014.06.041
Article
Google Scholar
Couhert A, Mercier F, Moyard J, Biancale R (2018) Systematic error mitigation in doris-derived geocenter motion. J Geophys Res Solid Earth 123(11):10142–10161. https://doi.org/10.1029/2018JB015453
Article
Google Scholar
Couhert A, Bizouard C, Mercier F, Chanard K, Greff M, Exertier P (2020a) Self-consistent determination of the Earth’s GM, geocenter motion and figure axis orientation. J Geod 94(12):113. https://doi.org/10.1007/s00190-020-01450-z
Article
Google Scholar
Couhert A, Delong N, Ait-Lakbir H, Mercier F (2020b) GPS-based LEO orbits referenced to the Earth’s center of mass. J Geophys Res Solid Earth 125(2):e2019JB018293. https://doi.org/10.1029/2019JB018293
Article
Google Scholar
Davies K (1990) Ionospheric radio. Peter Peregrinus Ltd., London. https://doi.org/10.1049/PBEW031E
Book
Google Scholar
Dehant V, Laguerre R, Rekier J, Rivoldini A, Triana SA, Trinh A, Van Hoolst T, Zhu P (2017) Understanding the effects of the core on the nutation of the earth. Geod Geodyn 8(6):389–395. https://doi.org/10.1016/j.geog.2017.04.005
Article
Google Scholar
Delva P, Denker H, Lion G (2019) Chronometric geodesy: methods and applications. In: Puetzfeld D, Lämmerzahl C (eds) Relativistic geodesy. Fundamental theories of physics, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-030-11500-5_2
Chapter
Google Scholar
Dickey JO, Marcus SL, de Viron O (2011) Air temperature and anthropogenic forcing: insights from the solid Earth. J Clim 24(2):569–574. https://doi.org/10.1175/2010JCLI3500.1
Article
Google Scholar
Dilßner F (2010) GPS IIF-1 satellite antenna phase center and attitude modeling. Inside GNSS 5(6):59–64
Google Scholar
Donlon CJ, Cullen R, Giulicchi L, Vuilleumier P, Francis CR, Kuschnerus M, Simpson W, Bouridah A, Caleno M, Bertoni R, Rancaño J, Pourier E, Hyslop A, Mulcahy J, Knockaert R, Hunter C, Webb A, Fornari M, Vaze P, Brown S, Willis J, Desai S, Desjonqueres J-D, Scharroo R, Martin-Puig C, Leuliette E, Egido A, Smith WHF, Bonnefond P, Le Gac S, Picot N, Tavernier G (2021) The Copernicus Sentinel-6 mission: enhanced continuity of satellite sea level measurements from space. Remote Sens Environ 258:112395. https://doi.org/10.1016/j.rse.2021.112395
Article
Google Scholar
Drożdżewski M, Sośnica K (2021) Tropospheric and range biases in Satellite Laser Ranging. J Geod 95(9):100. https://doi.org/10.1007/s00190-021-01554-0
Article
Google Scholar
Elosegui P, Davis JL, Jaldehag RK, Johansson JM, Niell AE, Shapiro II (1995) Geodesy using the Global Positioning System: the effects of signal scattering. J Geophys Res Solid Earth 100(B6):9921–9934. https://doi.org/10.1029/95JB00868
Article
Google Scholar
Exertier P, Belli A, Lemoine J (2017) Time biases in laser ranging observations: a concerning issue of space geodesy. Adv Space Res 60(5):948–968. https://doi.org/10.1016/j.asr.2017.05.016
Article
Google Scholar
Felikson D, Urban TJ, Gunter BC, Pie N, Pritchard HD, Harpold R, Schutz BE (2017) Comparison of elevation change detection methods from ICESat altimetry over the Greenland Ice Sheet. IEEE Trans Geosci Remote Sens 55(10):5494–5505. http://doi.org/10.1109/TGRS.2017.2709303
Article
Google Scholar
Flohrer C, Otten M, Springer T, Dow J (2011) Generating precise and homogeneous orbits for Jason-1 and Jason-2. Adv Space Res 48(1):152–172. https://doi.org/10.1016/j.asr.2011.02.017
Article
Google Scholar
Fox-Kemper B, Hewitt HT, Xiao C, Aðalgeirsdóttir G, Drijfhout SS, Edwards TL, Golledge NR, Hemer M, Kopp RE, Krinner G, Mix A, Notz D, Nowicki S, Nurhati IS, Ruiz L, Sallée J-B, Slangen ABA, Yu Y (2021) Ocean,
Cryosphere and Sea Level Change. In Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger
S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E,
Matthews J. BR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B,
editors, Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental Panel
on Climate Change. Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, pp. 1211–1362. https://doi.org/10.1017/9781009157896.011
Fritsche M, Dietrich R, Rülke A, Rothacher M, Steigenberger P (2009) Low-degree Earth deformation from reprocessed GPS observations. GPS Solut 14(2):165–175. https://doi.org/10.1007/s10291-009-0130-7
Article
Google Scholar
Fu Y, Argus DF, Landerer FW (2015) GPS as an independent measurement to estimate terrestrial water storage variations in Washington and Oregon. J Geophys Res Solid Earth 120(1):552–566. https://doi.org/10.1002/2014JB011415
Article
Google Scholar
Fuller-Rowell T, Yizengaw E, Doherty P, Basu S (eds) (2017) Ionospheric space weather. Longitude dependence and lower atmosphere forcing. American Geophysical Union and John Wiley & Sons, Hoboken, New Jersey
Gaia Collaboration, Mignard F et al. (2018) Gaia data release 2—the celestial reference frame (gaia-crf2). Astron Astrophys 616:A14. https://doi.org/10.1051/0004-6361/201832916
Article
Google Scholar
Ge M, Gendt G, Dick G, Zhang FP, Reigber C (2005) Impact of GPS satellite antenna offsets on scale changes in global network solutions. Geophys Res Lett 32(6):L06310. https://doi.org/10.1029/2004GL022224
Article
Google Scholar
Glaser S, Fritsche M, Sośnica K, Rodríguez-Solano CJ, Wang K, Dach R, Hugentobler U, Rothacher M, Dietrich R (2015) A consistent combination of GNSS and SLR with minimum constraints. J Geod 89(12):1165–1180. https://doi.org/10.1007/s00190-015-0842-0
Article
Google Scholar
Glaser S, Michalak G, Männel B, König R, Neumayer KH, Schuh H (2020) Reference system origin and scale realization within the future GNSS constellation “Kepler’’. J Geod 94(12):1–13. https://doi.org/10.1007/s00190-020-01441-0
Article
Google Scholar
GMES Sentinel-1 Team (2004) GMES Sentinel-1 System Requirements Document. Technical Report ES-RS-ESA-SY-0001. https://www.yumpu.com/en/document/read/4635086/system-requirements-document-emits-esa. Accessed 09 December 2022
Gozzard D, Howard L, Dix-Matthews B, Karpathakis S, Gravestock C, Schediwy S (2022) Ultrastable free-space laser links for a global network of optical atomic clocks. Phys Rev Lett 128(2):020801. https://doi.org/10.1103/PhysRevLett.128.020801
Article
Google Scholar
GSA Website (2017) Galileo Satellite Metadata. https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata. Accessed 05 December 2022
H2020 HSNAV Website (2020) VLBI Transmitter for G2G. https://h2020nav.esa.int/project/h2020-038-01. Accessed 14 Sep 2022
Guérou A, Meyssignac B, Prandi P, Ablain M, Ribes A, Bignalet-Cazalet F (2022) Current observed global mean sea level rise and acceleration estimated from satellite altimetry and the associated uncertainty, in preparation
Haines BJ, Bar-Sever YE, Bertiger WI, Desai SD, Harvey N, Sibois AE, Weiss JP (2015) Realizing a terrestrial reference frame using the Global Positioning System. J Geophys Res Solid Earth 120(8):5911–5939. https://doi.org/10.1002/2015JB012225
Article
Google Scholar
Hansen J, Sato M, Kharecha P, von Schuckmann K (2011) Earth’s energy imbalance and implications. Atmos Chem Phys 11(24):13421–13449. https://doi.org/10.5194/acp-11-13421-2011
Article
Google Scholar
Hellerschmied A, McCallum L, McCallum J, Sun J, Böhm J, Cao J (2018) Observing APOD with the AuScope VLBI array. Sensors 18(5):1587. https://doi.org/10.3390/s18051587
Article
Google Scholar
Huang W, Männel B, Brack A, Schuh H (2021) Two methods to determine scale-independent GPS PCOs and GNSS-based terrestrial scale: comparison and cross-check. GPS Solut 25(1):4. https://doi.org/10.1007/s10291-020-01035-5
Article
Google Scholar
Huang W, Männel B, Brack A, Ge M, Schuh H (2022) Estimation of GPS transmitter antenna phase center offsets by integrating space-based GPS observations. Adv Space Res 69(7):2682–2696. https://doi.org/10.1016/j.asr.2022.01.004
Article
Google Scholar
Huss M (2013) Density assumptions for converting geodetic glacier volume change to mass change. The Cryosphere 7(3):877–887. https://doi.org/10.5194/tc-7-877-2013
Article
Google Scholar
ILRS Website (2018) Galileo: Reflector information. https://ilrs.gsfc.nasa.gov/missions/satellite_missions/current_missions/ga02_reflector.html. Accessed 14 Sep 2022
International Altimetry Team (2021) Altimetry for the future: building on 25 years of progress. Adv Space Res 68(2):319–363. https://doi.org/10.1016/j.asr.2021.01.022
Article
Google Scholar
IPCC Report (2021) Summary for policymakers. In Masson-Delmotte V, Zhai P, Pirani A, Connors S, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M, Huang M, Leitzell K, Lonnoy E, Matthews J, Maycock T, Waterfield T, Yelekçi O, Yu R, Zhou B, editors, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press
ITRF Website (2022) ITRF 2020 solution. https://itrf.ign.fr/en/solutions/ITRF2020/. Accessed 14 Sep 2022
IUGG Website (2022) IUGG General Assemblies. https://iugg.org/meetings/iugg-general-assemblies/. Accessed 09 Dec 2022
IVS Website (2021) International VLBI Service for Geodesy & Astrometry. https://ivscc.gsfc.nasa.gov/. Accessed 14 Sep 2022
Jaradat A, Jaron F, Gruber J, Nothnagel A (2021) Considerations of VLBI transmitters on Galileo satellites. Adv Space Res 68(3):1281–1300. https://doi.org/10.1016/j.asr.2021.04.048
Article
Google Scholar
Jetzer et al. (2017) E-GRIP. Proposal to the call for ideas by the Swiss Space Office, unpublished
Jiang Z, Hsu Y-J, Yuan L, Tang M, Yang X, Yang X (2022) Hydrological drought characterization based on GNSS imaging of vertical crustal deformation across the contiguous United States. Sci Total Environ 823:153663. https://doi.org/10.1016/j.scitotenv.2022.153663
Article
Google Scholar
Jäggi A, Hugentobler U, Bock H, Beutler G (2007) Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv Space Res 39(10):1612–1619. https://doi.org/10.1016/j.asr.2007.03.012
Article
Google Scholar
Jäggi A, Dach R, Montenbruck O, Hugentobler U, Bock H, Beutler G (2009) Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. J Geod 83(12):1145. https://doi.org/10.1007/s00190-009-0333-2
Article
Google Scholar
Kehm A, Bloßfeld M, Pavlis E, Seitz F (2018) Future global SLR network evolution and its impact on the terrestrial reference frame. J Geod 92:625–635. https://doi.org/10.1007/s00190-017-1083-1
Article
Google Scholar
Kelley M (2009) The Earth’s ionosphere. Plasma physics & electrodynamics. Elsevier, London
Google Scholar
Khan SA, Wahr J, Bevis M, Velicogna I, Kendrick E (2010) Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophys Res Lett 37(6):L06501. https://doi.org/10.1029/2010GL042460
Article
Google Scholar
Khan SA, Aschwanden A, Bjørk AA, Wahr J, Kjeldsen KK, Kjaer KH (2015) Greenland Ice Sheet mass balance: a review. Rep Prog Phys 78(4):046801. https://doi.org/10.1088/0034-4885/78/4/046801
Article
Google Scholar
Khan SA, Sasgen I, Bevis M, van Dam T, Bamber JL, Wahr J, Willis M, Kjær KH, Wouters B, Helm V et al (2016) Geodetic measurements reveal similarities between post-last glacial maximum and present-day mass loss from the Greenland Ice Sheet. Sci Adv 2(9):e1600931. https://doi.org/10.1126/sciadv.1600931
Article
Google Scholar
King MA, Altamimi Z, Boehm J, Bos M, Dach R, Elosegui P, Fund F, Hernández-Pajares M, Lavallee D, Mendes Cerveira PJ, Penna N, Riva REM, Steigenberger P, van Dam T, Vittuari L, Williams S, Willis P (2010) Improved constraints on models of glacial isostatic adjustment: a review of the contribution of ground-based geodetic observations. Surv Geophys 31:465–507. https://doi.org/10.1007/s10712-010-9100-4
Article
Google Scholar
Kintner P, Ledvina B, de Paula E (2007) GPS and ionospheric scintillations. Space Weather 5:S09003. https://doi.org/10.1029/2006SW000260
Article
Google Scholar
Kjeldsen KK, Korsgaard NJ, Bjørk AA, Khan SA, Box JE, Funder S, Larsen NK, Bamber JL, Colgan W, Van Den Broeke M et al. (2015) Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature 528(7582):396–400. https://doi.org/10.1038/nature16183
Klopotek G, Hobiger T, Haas R, Otsubo T (2020) Geodetic VLBI for precise orbit determination of Earth satellites: a simulation study. J Geod 94(56):1–26. https://doi.org/10.1007/s00190-020-01381-9
Article
Google Scholar
Kuang D, Bertiger W, Desai SD, Haines BJ, Yuan D-N (2019) Observed geocenter motion from precise orbit determination of GRACE satellites using GPS tracking and accelerometer data. J Geod 93(10):1835–1844. https://doi.org/10.1007/s00190-019-01283-5
Article
Google Scholar
Kuipers Munneke P, Ligtenberg S, Noël B, Howat I, Box J, Mosley-Thompson E, McConnell J, Steffen K, Harper J, Das S, van den Broeke MR (2015) Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014. The Cryosphere 9(6):2009–2025. https://doi.org/10.5194/tc-9-2009-2015
Article
Google Scholar
Kwak Y, Bloßfeld M, Schmid R, Angermann D, Gerstl M, Seitz M (2018) Consistent realization of celestial and terrestrial reference frames. J Geod 92:1047–1061. https://doi.org/10.1007/s00190-018-1130-6
Article
Google Scholar
Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M (2014) Sea level and global ice volumes from the last glacial maximum to the holocene. Proc Natl Acad Sci USA 111(43):15296–15303. https://doi.org/10.1073/pnas.1411762111
Article
Google Scholar
Landerer FW, Flechtner FM, Save H, Webb FH, Bandikova T, Bertiger WI, Bettadpur SV, Byun SH, Dahle C, Dobslaw H, Fahnestock E, Harvey N, Kang Z, Kruizinga G. LH, Loomis BD, McCullough C, Murböck M, Nagel P, Paik M, Pie N, Poole S, Strekalov D, Tamisiea ME, Wang F, Watkins MM, Wen H-Y, Wiese DN, Yuan D-N (2020) Extending the global mass change data record: GRACE Follow-On instrument and science data performance. Geophys Res Lett 47(12):e2020GL088306. https://doi.org/10.1029/2020GL088306
Lisdat C, Grosche G, Quintin N, Shi C, Raupach SMF, Grebing C, Nicolodi D, Stefani F, Al-Masoudi A, Dörscher S, Häfner S, Robyr J-L, Chiodo N, Bilicki S, Bookjans E, Koczwara A, Koke S, Kuhl A, Wiotte F, Meynadier F, Camisard E, Abgrall M, Lours M, Legero T, Schnatz H, Sterr U, Denker H, Chardonnet C, Coq YL, Santarelli G, Amy-Klein A, Targat RL, Lodewyck J, Lopez O, Pottie P-E (2016) A clock network for geodesy and fundamental science. Nat Commun 7:12443. https://doi.org/10.1038/ncomms12443
Article
Google Scholar
Loeb NG, Doelling DR (2020) CERES Energy Balanced and Filled (EBAF) from afternoon-only satellite orbits. Remote Sens 12(8):1280. https://doi.org/10.3390/rs12081280
Article
Google Scholar
Loeb NG, Doelling DR, Wang H, Su W, Nguyen C, Corbett JG, Liang L, Mitrescu C, Rose FG, Kato S (2018) Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product. J Clim 31(2):895–918. https://doi.org/10.1175/JCLI-D-17-0208.1
Article
Google Scholar
Loomis BD, Rachlin KE, Luthcke SB (2019) Improved Earth oblateness rate reveals increased ice sheet losses and mass-driven sea level rise. Geophys Res Lett 46(12):6910–6917. https://doi.org/10.1029/2019GL082929
Article
Google Scholar
Loomis BD, Rachlin KE, Wiese DN, Landerer FW, Luthcke SB (2020) Replacing GRACE/GRACE-FO with Satellite Laser Ranging: Impacts on Antarctic ice sheet mass change. Geophys Res Lett 47(3):e2019GL085488. https://doi.org/10.1029/2019GL085488
Article
Google Scholar
Luceri V, Pirri M, Rodríguez J, Appleby G, Pavlis EC, Müller H (2019) Systematic errors in SLR data and their impact on the ILRS products. J Geod 93(11):2357–2366. https://doi.org/10.1007/s00190-019-01319-w
Article
Google Scholar
Luthcke SB, Zelensky NP, Rowlands DD, Lemoine FG, Williams TA (2003) The 1-centimeter orbit: Jason-1 Precision Orbit Determination using GPS, SLR, DORIS, and altimeter data special issue: Jason-1 calibration/validation. Mar Geodesy 26(3–4):399–421. https://doi.org/10.1080/714044529
Article
Google Scholar
L’Ecuyer TS, Beaudoing HK, Rodell M, Olson W, Lin B, Kato S, Clayson CA, Wood E, Sheffield J, Adler R, Huffman G, Bosilovich M, Gu G, Robertson F, Houser PR, Chambers D, Famiglietti JS, Fetzer E, Liu WT, Gao X, Schlosser CA, Clark E, Lettenmaier DP, Hilburn K (2015) The observed state of the energy budget in the early twenty-first century. J Clim 28(21):8319–8346. https://doi.org/10.1175/JCLI-D-14-00556.1
Article
Google Scholar
Mader GL (1999) GPS antenna calibration at the National Geodetic Survey. GPS Solut 3(1):50–58
Article
Google Scholar
Männel B (2016) Co-Location of Geodetic Observation Techniques in Space. PhD thesis, ETH Zürich
Männel B, Rothacher M (2017) Geocenter variations derived from a combined processing of LEO- and ground-based GPS observations. J Geod 91(8):933–944. https://doi.org/10.1007/s00190-017-0997-y
Article
Google Scholar
Mao X, Arnold D, Girardin V, Villiger A, Jäggi A (2021) Dynamic GPS-based LEO orbit determination with 1cm precision using the Bernese GNSS Software. Adv Space Res 67(2):788–805. https://doi.org/10.1016/j.asr.2020.10.012
Article
Google Scholar
Marti F, Blazquez A, Meyssignac B, Ablain M, Barnoud A, Fraudeau R, Jugier R, Chenal J, Larnicol G, Pfeffer J, Restano M, Benveniste J (2022) Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry. Earth Syst Sci Data 14(1):229–249. https://doi.org/10.5194/essd-14-229-2022
Article
Google Scholar
Medley B, Neumann TA, Zwally HJ, Smith BE (2020) Forty-year simulations of firn processes over the Greenland and Antarctic ice sheets. The Cryosphere Discussions pages 1–35. https://doi.org/10.5194/tc-2020-266
Meindl M, Beutler G, Thaller D, Dach R, Jäggi A (2013) Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv Space Res 51(7):1047–1064. https://doi.org/10.1016/j.asr.2012.10.026
Article
Google Scholar
Métivier L, Greff-Lefftz M, Altamimi Z (2010) On secular geocenter motion: the impact of climate changes. Earth Planet Sci Lett 296(3–4):360–366. https://doi.org/10.1016/j.epsl.2010.05.021
Article
Google Scholar
Métivier L, Greff-Lefftz M, Altamimi Z (2011) Erratum to “On secular geocenter motion: the impact of climate changes’’ [Earth Planet Sci Lett 296 (2010) 360–366]. Earth Planet Sci Lett 306(1–2):136–136. https://doi.org/10.1016/j.epsl.2011.03.026
Article
Google Scholar
Métivier L, Altamimi Z, Rouby H (2020) Past and present ITRF solutions from geophysical perspectives. Adv Space Res 65(12):2711–2722. https://doi.org/10.1016/j.asr.2020.03.031
Article
Google Scholar
Métivier L, Rouby H, Rebischung P, Altamimi Z (2020) ITRF2014, Earth figure changes, and geocenter velocity: implications for GIA and recent ice melting. J Geophys Res Solid Earth, 125(2):e2019JB018333. https://doi.org/10.1029/2019JB018333
Article
Google Scholar
Meyssignac B, Boyer T, Zhao Z, Hakuba MZ, Landerer FW, Stammer D, Köhl A, Kato S, L’Ecuyer T, Ablain M, Abraham JP, Blazquez A, Cazenave A, Church JA, Cowley R, Cheng L, Domingues CM, Giglio D, Gouretski V, Ishii M, Johnson GC, Killick RE, Legler D, Llovel W, Lyman J, Palmer MD, Piotrowicz S, Purkey SG, Roemmich D, Roca R, Savita A, von Schuckmann K, Speich S, Stephens G, Wang G, Wijffels SE, Zilberman N (2019) Measuring global ocean heat content to estimate the earth energy imbalance. Front Mar Sci 6:432. https://doi.org/10.3389/fmars.2019.00432
Article
Google Scholar
Millan R, Mouginot J, Rabatel A, Morlighem M (2022) Ice velocity and thickness of the world’s glaciers. Nat Geosci 15(2):124–129. https://doi.org/10.1038/s41561-021-00885-z
Article
Google Scholar
Montenbruck O, Hackel S, Jäggi A (2018) Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations. J Geod 92(7):711–726. https://doi.org/10.1007/s00190-017-1090-2
Article
Google Scholar
Montenbruck O, Hackel S, Wermuth M, Zangerl F (2021) Sentinel-6A precise orbit determination using a combined GPS/Galileo receiver. J Geod 95(9):109. https://doi.org/10.1007/s00190-021-01563-z
Article
Google Scholar
Müller J, Dirkx D, Kopeikin SM, Lion G, Panet I, Petit G, Visser P (2018) High performance clocks and gravity field determination. Space Sci Rev 214(1):1–31. https://doi.org/10.1007/s11214-017-0431-z
Article
Google Scholar
National Academies of Sciences, Engineering, and Medicine (2018) Thriving on our changing planet: a Decadal strategy for earth observation from space. The National Academies Press, Washington, https://doi.org/10.17226/24938
Book
Google Scholar
National Academies of Sciences, Engineering, and Medicine (2020) Evolving the geodetic infrastructure to meet new scientific needs. The National Academies Press, Washington. https://doi.org/10.17226/25579
Book
Google Scholar
Nerem RS, Beckley BD, Fasullo JT, Hamlington BD, Masters D, Mitchum GT (2018) Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proc Natl Acad Sci USA. 115(9):2022–2025. https://doi.org/10.1073/pnas.1717312115
Article
Google Scholar
Nothnagel A, Artz T, Behrend D (2017) J Geod 91:711–721. https://doi.org/10.1007/s00190-016-0950-5
Pearlman MR, Noll CE, Pavlis EC, Lemoine FG, Combrink L, Degnan JJ, Kirchner G, Schreiber U (2019) J Geod 93:2161–2180. https://doi.org/10.1007/s00190-019-01241-1
Peltier WR, Argus D, Drummond R (2015) Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J Geophys Res Solid Earth 120(1):450–487. https://doi.org/10.1002/2014JB011176
Article
Google Scholar
Peter H, Meyer U, Lasser M, Jäggi A (2022) COST-G gravity field models for precise orbit determination of Low Earth Orbiting satellites. Adv Space Res 69(12):4155–4168. https://doi.org/10.1016/j.asr.2022.04.005
Article
Google Scholar
Petit G, Luzum B (eds) (2010) IERS Conventions (2010). IERS Technical Note No. 36. https://iers-conventions.obspm.fr/conventions_material.php. Accessed 09 Dec 2022
Plag H-P, Pearlman M (eds) (2009) Global geodetic observing system. Springer, Berlin
Google Scholar
Qu Z, Guo J, Zhao Q (2021) Phase center corrections for BDS IGSO and MEO satellites in IGb14 and IGSR3 frame. Remote Sens 13(4):745. https://doi.org/10.3390/rs13040745
Article
Google Scholar
Raghuraman SP, Paynter D, Ramaswamy V (2021) Anthropogenic forcing and response yield observed positive trend in Earth’s energy imbalance. Nat Commun 12(1):4577. https://doi.org/10.1038/s41467-021-24544-4
Article
Google Scholar
Rebischung P, Altamimi Z, Springer T (2014) A collinearity diagnosis of the GNSS geocenter determination. J Geod 88(1):65–85. https://doi.org/10.1007/s00190-013-0669-5
Article
Google Scholar
Richter HMP, Lück C, Klos A, Sideris MG, Rangelova E, Kusche J (2021) Reconstructing GRACE-type time-variable gravity from the Swarm satellites. Sci Rep 11(1):1117. https://doi.org/10.1038/s41598-020-80752-w
Article
Google Scholar
Riddell AR, King MA, Watson CS, Sun Y, Riva REM, Rietbroek R (2017) Uncertainty in geocenter estimates in the context of ITRF2014. J Geophys Res Solid Earth 122(5):4020–4032. https://doi.org/10.1002/2016JB013698
Article
Google Scholar
Ries JC, Eanes RJ, Shum CK, Watkins MM (1992) Progress in the determination of the gravitational coefficient of the Earth. Geophys Res Lett 19(6):529–531. https://doi.org/10.1029/92GL00259
Article
Google Scholar
Rodriguez-Solano CJ, Hugentobler U, Steigenberger P, Bloßfeld M, Fritsche M (2014) Reducing the draconitic errors in GNSS geodetic products. J Geod 88(6):559–574. https://doi.org/10.1007/s00190-014-0704-1
Article
Google Scholar
Rothacher M, Schaer S, Mervart L, Beutler G (1995) Determination of antenna phase center variations using GPS data. In: IGS Workshop Proceedings: Special Topics and New Directions, GeoForschungsZentrum Potsdam, Germany
Russel C, Luhmann J, Strangeway R (2016) Space physics, an introduction. Cambridge University Press, Cambridge
Google Scholar
Scaramuzza S, Dach R, Beutler G, Arnold D, Sušnik A, Jäggi A (2018) Dependency of geodynamic parameters on the GNSS constellation. J Geod 92(1):93–104. https://doi.org/10.1007/s00190-017-1047-5
Article
Google Scholar
Schmid R, Dach R, Collilieux X, Jäggi A, Schmitz M, Dilssner F (2016) Absolute IGS antenna phase center model igs08.atx: status and potential improvements. J Geod 90(4):343–364. https://doi.org/10.1007/s00190-015-0876-3
Article
Google Scholar
Schmid R, Rothacher M (2003) Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites. J Geod 77(7–8):440–446. https://doi.org/10.1007/s00190-003-0339-0
Article
Google Scholar
Schmid R, Rothacher M, Thaller D, Steigenberger P (2005) Absolute phase center corrections of satellite and receiver antennas. GPS Solut 9(4):283–293. https://doi.org/10.1007/s10291-005-0134-x
Article
Google Scholar
Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model of GPS receiver and satellite antennas. J Geod 81(12):781–798. https://doi.org/10.1007/s00190-007-0148-y
Article
Google Scholar
Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The 2008 DGFI realization of the ITRS: DTRF2008. J Geod 86(12):1097–1123. https://doi.org/10.1007/s00190-012-0567-2
Article
Google Scholar
Seitz M, Steigenberger P, Artz T (2014) Consistent adjustment of combined terrestrial and celestial reference frames. In: Rizos, C., Willis, P. (eds) Earth on the Edge: Science for a Sustainable Planet, International Association of Geodesy Symposia, vol 139, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37222-3_28
Seitz M, Bloßfeld M, Angermann D, Seitz F (2022) DTRF2014: DGFI-TUM’s ITRS realization 2014. Adv Space Res 69(6):2391–2420. https://doi.org/10.1016/j.asr.2021.12.037
Article
Google Scholar
Sert H, Hugentobler U, Karatekin O, Dehant V (2022) Potential of UT1 - UTC transfer to the Galileo constellation using onboard VLBI transmitters. J Geod 96:83. https://doi.org/10.1007/s00190-022-01675-0
Article
Google Scholar
Shepherd A, Ivins E, Rignot E, Smith B, van den Broeke M, Velicogna I, Whitehouse P, Briggs K, Joughin I, Krinner G, Nowicki S, Payne T, Scambos T, Schlegel N, A G, Agosta C, Ahlstrøm A, Babonis G, Barletta VR, Bjørk AA, Blazquez A, Bonin J, Colgan W, Csatho B, Cullather R, Engdahl ME, Felikson D, Fettweis X, Forsberg R, Hogg AE, Gallee H, Gardner A, Gilbert L, Gourmelen N, Groh A, Gunter B, Hanna E, Harig C, Helm V, Horvath A, Horwath M, Khan S, Kjeldsen KK, Konrad H, Langen PL, Lecavalier B, Loomis B, Luthcke S, McMillan M, Melini D, Mernild S, Mohajerani Y, Moore P, Mottram R, Mouginot J, Moyano G, Muir A, Nagler T, Nield G, Nilsson J, Noël B, Otosaka I, Pattle ME, Peltier WR, Pie N, Rietbroek R, Rott H, Sandberg Sørensen L, Sasgen I, Save H, Scheuchl B, Schrama E, Schröder L, Seo K-W, Simonsen SB, Slater T, Spada G, Sutterley T, Talpe M, Tarasov L, van de Berg WJ, van der Wal W, van Wessem M, Vishwakarma BD, Wiese D, Wilton D, Wagner T, Wouters B, Wuite J, The IMBIE Team (2020) Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 579:233–239. https://doi.org/10.1038/s41586-019-1855-2
Shepherd A, Ivins E, Rignot E, Smith B, van der Broeke M, Velicogna I, Whitehouse PL, Briggs K, Joughin I, Krinner G, Nowicki S, Payne A, Scambos T, Schlegel N, A G, Agosta C, Ahlstrom A, Babonis G, Barletta VR, Blazquez A, Boning J, Csatho B, Cullather R, Felikson D, Fettweis X, Forsberg R, Gallee H, Gardner A, Gilbert L, Groh A, Gunther H, Hanna E, Harig C, Helm V, Horwath A, Horwath M, Khan SA, Kjeldsen K, Konrad H, Langen P, Lecavalier, Loomis BD, Luthcke S, McMillan M, Melini D, Mernild SH, Mohajerani Y, Moore P, Mouginot J, Moyano G, Muir A, Nagler T, Nield G, Nilsson J, Noel B, Otosaka, Pattle M, Peltier WR, Pie N, Rietbroek R, Rott H, Sandberg L, Sasgen I, Save H, Scheuchl B, Schrama E, Schroder L, Seo K, Simonsen S, Slater T, Spada G, Sutterley TC, Talpe M, Tarasov L, van de Berg WJ, van der Wal W, van Wessem M, vishwakarma, Wiese DN, Wouters B, The IMBIE Team (2018) Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558:219–222. https://doi.org/10.1038/s41586-018-0179-y
Sinclair LC, Bergeron H, Swann WC, Khader I, Cossel KC, Cermak M, Newbury NR, Deschênes J-D (2019) Femtosecond optical two-way time-frequency transfer in the presence of motion. Phys Rev A 99(2):023844. https://doi.org/10.1103/PhysRevA.99.023844
Article
Google Scholar
Soffel M, Klioner SA, Petit G, Wolf P, Kopeikin SM, Bretagnon P, Brumberg VA, Capitaine N, Damour T, Fukushima T, Guinot B, Huang T-Y, Lindegren L, Ma C, Nordtvedt K, Ries JC, Seidelmann PK, Vokrouhlick D, Will CM, Xu C (2003) The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: Explanatory supplement. Astron J 126(6):2687–2706. https://doi.org/10.1086/378162
Article
Google Scholar
Sørensen LS, Simonsen SB, Forsberg R, Khvorostovsky K, Meister R, Engdahl ME (2018) 25 years of elevation changes of the Greenland Ice Sheet from ERS, Envisat, and CryoSat-2 radar altimetry. Earth Planet Sci Lett 495:234–241. https://doi.org/10.1016/j.epsl.2018.05.015
Article
Google Scholar
Sośnica K, Jäggi A, Meyer U, Thaller D, Beutler G, Arnold D, Dach R (2015) Time variable Earth’s gravity field from SLR satellites. J Geod 89(10):945–960. https://doi.org/10.1007/s00190-015-0825-1
Article
Google Scholar
Sovers OJ, Fanselow JL, Jacobs CS (1998) Astrometry and geodesy with radio interferometry: experiments, models, results. Rev Mod Phys 70:1393–1454. https://doi.org/10.1103/RevModPhys.70.1393
Article
Google Scholar
Steigenberger P, Fritsche M, Dach R, Schmid R, Montenbruck O, Uhlemann M, Prange L (2016) Estimation of satellite antenna phase center offsets for Galileo. J Geod 90(8):773–785. https://doi.org/10.1007/s00190-016-0909-6
Article
Google Scholar
Štěpánek P, Duan B, Filler V, Hugentobler U (2020) Inclusion of GPS clock estimates for satellites Sentinel-3A/3B in DORIS geodetic solutions. J Geod 94(12):116. https://doi.org/10.1007/s00190-020-01428-x
Article
Google Scholar
Sun Y, Ditmar P, Riva R (2017) Statistically optimal estimation of degree-1 and C20 coefficients based on GRACE data and an ocean bottom pressure model. Geophys J Int 210(3):1305–1322. https://doi.org/10.1093/gji/ggx241
Article
Google Scholar
Sun Y, Riva R, Ditmar P (2016) Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models. J Geophys Res Solid Earth 121(11):8352–8370. https://doi.org/10.1002/2016JB013073
Article
Google Scholar
Swenson S, Chambers D, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res Solid Earth 113:B08410. https://doi.org/10.1029/2007JB005338
Article
Google Scholar
Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505. https://doi.org/10.1126/science.1099192
Article
Google Scholar
Thaller D, Dach R, Seitz M, Beutler G, Mareyen M, Richter B (2011) Combination of GNSS and SLR observations using satellite co-locations. J Geod 85(5):257–272. https://doi.org/10.1007/s00190-010-0433-z
Article
Google Scholar
Thaller D, Sośnica K, Dach R, Jäggi A, Beutler G, Mareyen M, Richter B (2014) Geocenter coordinates from GNSS and combined GNSS-SLR solutions using satellite co-locations. In: Rizos, C., Willis, P. (eds) Earth on the Edge: Science for a Sustainable Planet, International Association of Geodesy Symposia, vol 139, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37222-3_16
Trenberth KE (2014) Challenges for observing and modeling the global water cycle. In: Lakshmi V, Alsdorf D, Anderson M, Biancamaria S, Cosh M, Entin J, Huffman G, Kustas W, van Oevelen P, Painter T, Parajka J, Rodell M, Rüdiger C (eds) Remote Sensing of the Terrestrial Water Cycle, American Geophysical Union. https://doi.org/10.1002/9781118872086.ch32
UN-GGIM (2021) The SDGs geospatial roadmap. United Nations Comittee of Experts on Global Geospatial Information Management. https://ggim.un.org/documents/SDGs-Geospatial-Roadmap.pdf
UN-GGIM (2022) Future Geospatial Information Ecosystem: From SDI to SoS and on to the Geoverse. United Nations Comittee of Experts on Global Geospatial Information Management. https://ggim.un.org/meetings/GGIM-committee/12th-Session/documents/Future_Geospatial_Information_Ecosystem_Discussion_Paper_July2022.pdf
UN SDGs’ Website (2022) United nations: Department of economic and social affairs, sustainable development. https://sdgs.un.org/. Accessed 14 September 2022
United Nations General Assembly (2015) 69/266. A global geodetic reference frame for sustainable development. Resolution adopted by the General Assembly on 26 February 2015. A/RES/69/266, https://www.undocs.org/1603Home/Mobile?FinalSymbol=A%2FRES%2F69%2F266&Language=E&DeviceType=Desktop&LangRequested=False
Velicogna I, Mohajerani Y, Landerer F, Mouginot J, Noel B, Rignot E, Sutterley T, van den Broeke M, van Wessem M, Wiese D (2020) Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow-On missions. Geophys Res Lett 47(8):e2020GL087291. https://doi.org/10.1029/2020GL087291
Velicogna I, Wahr J (2013) Time-variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophys Res Lett 40(12):3055–3063. https://doi.org/10.1002/grl.50527
Article
Google Scholar
Velicogna I, Sutterley TC, Van Den Broeke MR (2014) Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys Res Lett 41(22):8130–8137. https://doi.org/10.1002/2014GL061052
Article
Google Scholar
Veng T, Andersen OB (2021) Consolidating sea level acceleration estimates from satellite altimetry. Adv Space Res 68(2):496–503. https://doi.org/10.1016/j.asr.2020.01.016
Article
Google Scholar
Villiger A, Dach R, Schaer S, Prange L, Jäggi A (2018) Antenna calibrations for TRF scale determination and their influence on coordinate estimation. In: Report on the Symposium of the IAG Subcommission for Europe (EUREF) held in Amsterdam, The Netherland, 30 May–01 June 2018
Villiger A, Dach R, Schaer S, Prange L, Zimmermann F, Kuhlmann H, Wübbena G, Schmitz M, Beutler G, Jäggi A (2020) GNSS scale determination using calibrated receiver and Galileo satellite antenna patterns. J Geod 94(9):93. https://doi.org/10.1007/s00190-020-01417-0
Article
Google Scholar
von Schuckmann K, Cheng L, Palmer MD, Hansen J, Tassone C, Aich V, Adusumilli S, Beltrami H, Boyer T, Cuesta-Valero FJ, Desbruyères D, Domingues C, García-García A, Gentine P, Gilson J, Gorfer M, Haimberger L, Ishii M, Johnson GC, Killick R, King BA, Kirchengast G, Kolodziejczyk N, Lyman J, Marzeion B, Mayer M, Monier M, Monselesan DP, Purkey S, Roemmich D, Schweiger A, Seneviratne SI, Shepherd A, Slater DA, Steiner AK, Straneo F, Timmermans M-L, Wijffels SE (2020) Heat stored in the Earth system: where does the energy go? Earth Syst Sci Data 12(3):2013–2041. https://doi.org/10.5194/essd-12-2013-2020
Article
Google Scholar
Wautelet G, Loyer S, Mercier F, Perosanz F (2017) Computation of GPS P1–P2 differential code biases with JASON-2. GPS Solut 21:1619–1631. https://doi.org/10.1007/s10291-017-0638-1
Article
Google Scholar
Whitehouse PL, Gomez N, King MA, Wiens DA (2019) Solid Earth change and the evolution of the Antarctic ice sheet. Nat Commun 10(1):1–14. https://doi.org/10.1038/s41467-018-08068-y
Article
Google Scholar
Whitehouse P, Milne G, Lambeck K (2021) Glacial Isostatic Adjustment. In: Fowler, A., Ng, F. (eds) Glaciers and Ice Sheets in the Climate System, Springer Textbooks in Earth Sciences, Geography and Environment, Springer, Cham. https://doi.org/10.1007/978-3-030-42584-5_15
Wouters B, Gardner AS, Moholdt G (2019) Global glacier mass loss during the GRACE satellite mission (2002–2016). Front Earth Sci 7:96. https://doi.org/10.3389/feart.2019.00096
Article
Google Scholar
Wu X, Collilieux X, Altamimi Z, Vermeersen B, Gross R, Fukumori I (2011) Accuracy of the International Terrestrial Reference Frame origin and Earth expansion. Geophys Res Lett 38(13):L13304. https://doi.org/10.1029/2011GL047450
Article
Google Scholar
Wu X, Ray J, van Dam T (2012) Geocenter motion and its geodetic and geophysical implications. J Geodyn 58:44–61. https://doi.org/10.1016/j.jog.2012.01.007
Article
Google Scholar
Wu X, Abbondanza C, Altamimi Z, Chin TM, Collilieux X, Gross RS, Heflin MB, Jiang Y, Parker JW (2015) KALREF-A Kalman filter and time series approach to the International Terrestrial Reference Frame realization. J Geophys Res Solid Earth 120(5):3775–3802. https://doi.org/10.1002/2014JB011622
Article
Google Scholar
Wübbena G, Schmitz M, Menge F, Böder V, Seeber G (2000) Automated absolute field calibration of gps antennas in real-time. In: Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000), Salt Lake City, UT, September 2000
Wöppelmann G, Marcos M (2016) Vertical land motion as a key to understanding sea level change and variability. Rev Geophys 54(1):64–92. https://doi.org/10.1002/2015RG000502
Article
Google Scholar
Xu D, Delva P, Lopez O, Amy-Klein A, Pottie P-E (2019) Reciprocity of propagation in optical fiber links demonstrated to \(10^{-21}\). Optics Express 27(25):36965–36975. https://doi.org/10.1364/OE.27.036965
Article
Google Scholar
Zajdel R, Sośnica K, Bury G, Dach R, Prange L (2020) System-specific systematic errors in Earth rotation parameters derived from GPS, GLONASS, and Galileo. GPS Solut 24(3):1–15. https://doi.org/10.1007/s10291-020-00989-w
Article
Google Scholar
Zajdel R, Sośnica K, Bury G, Dach R, Prange L, Kazmierski K (2021) Sub-daily polar motion from GPS, GLONASS, and Galileo. J Geod 95(1):1–27. https://doi.org/10.1007/s00190-020-01453-w
Article
Google Scholar
Zajdel R, Sośnica K, Bury G (2021) Geocenter coordinates derived from multi-GNSS: a look into the role of solar radiation pressure modeling. GPS Solut 25(1):1. https://doi.org/10.1007/s10291-020-01037-3
Article
Google Scholar
Zajdel R, Steigenberger P, Montenbruck O (2022) On the potential contribution of BeiDou-3 to the realization of the terrestrial reference frame scale. GPS Solut 26(4):109. https://doi.org/10.1007/s10291-022-01298-0
Article
Google Scholar
Zhu YS, Massmann F-H, Yu Y, Reigber C (2003) Satellite antenna phase center offsets and scale errors in GPS solutions. J Geod 76(11):668–672. https://doi.org/10.1007/s00190-002-0294-1
Article
Google Scholar