Aida N (1997) Paleomagnetic stratigraphy of the type section (proposed site) for the Lower/Middle Pleistocene Boundary Kokumoto Formation. In: Kawamura M, Oka T, Kondo T (eds) Commemorative volume for Professor Makoto Kato, Commemorative Volume Publication Committee, Sapporo, pp 275–282 (in Japanese with English abstract)
Bazin L, Landais A, Lemieux-Dudon B, Toye Mahamadou Kele H, Veres D, Parrenin F, Martinerie P, Ritz C, Capron E, Lipenkov V, Loutre M-F, Raynaud D, Vinther B, Svensson A, Rasmusse OS, Severi M, Blunier T, Leuenberge RM, Fischer H, Masson-Delmotte V, Chappellaz J, Wolff E (2013) An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Clim Past 9:1715–1731
Article
Google Scholar
Beer J, Muscheler R, Wagner G, Laj C, Kissel C, Kubik PW, Synal HA (2002) Cosmogenic nuclides during isotope stages 2 and 3. Quat Sci Rev 21:1129–1139
Article
Google Scholar
Bloemendal J, King JW, Hall FR, Doh S-J (1992) Rock magnetism of late Neogene and Pleistocene deep-sea sediments: relationship to sediment source, diagenetic processes, and sediment lithology. J Geophys Res 97:4361–4375
Article
Google Scholar
Channell JET, Kleiven HF (2000) Geomagnetic palaeointensities and astrochronological ages for the Matuyama–Brunhes boundary and the boundaries of the Jaramillo Subchron: palaeomagnetic and oxygen isotope records from ODP Site 983. Philos Trans R Soc Lond B 358:1027–1047
Article
Google Scholar
Channell JET, Hodell DA, McManus J, Lehman B (1998) Orbital modulation of the Earth’s magnetic field intensity. Nature 394:464–468
Article
Google Scholar
Channell JET, Hodell DA, Xuan C, Mazaud A, Stoner JS (2008) Age calibrated relative paleointensity for the last 1.5 Myr at IODP Site U1308 (North Atlantic). Earth Planet Sci Lett 274:59–71. doi:10.1016/j.epsl.2008.07.005
Article
Google Scholar
Channell JET, Xuan C, Hodell DA (2009) Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500). Earth Planet Sci Lett 283:14–23. doi:10.1016/j.epsl.2009.03.012
Article
Google Scholar
Channell JET, Hodell DA, Singer BS, Xuan C (2010) Reconciling astrochronological and 40Ar/39Ar ages for the Matuyama–Brunhes boundary and late Matuyama chron. Geochem Geophys Geosyst 11:Q0AA12, doi:10.1029/2010GC003203
Channell JET, Wright JD, Mazaud A, Stoner JS (2014) Age through tandem correlation of Quaternary relative paleointensity (RPI) and oxygen isotope data at IODP Site U1306 (Eirik Drift, SW Greenland). Quat Sci Rev 88:135–146
Article
Google Scholar
Channell JET, Hodell DA, Curtis JH (2016) Relative paleointensity (RPI) and oxygen isotope stratigraphy at IODP Site U1308: North Atlantic RPI stack for 1.2–2.2 Ma (NARPI-2200) and age of the Olduvai Subchron. Quat Sci Rev 131:1–19. doi:10.1016/j.quascirev.2015.10.011
Article
Google Scholar
Cherepanova MV, Pushkar VS, Razjigaeva N, Kumai H, Koizumi I (2002) Diatom biostratigraphy of the Kazusa Group, Boso Peninsula, Honshu, Japan. Quat Res (Daiyonki Kenkyu) 41:1–10
Article
Google Scholar
Christl M, Strobl C, Mangini A (2003) Beryllium-10 in deep-sea sediments: a tracer for the Earth’s magnetic field intensity during the last 200,000 years. Quat Sci Rev 22:725–739
Article
Google Scholar
Christl M, Mangini A, Kubik PW (2007) Highly resolved Beryllium-10 record from ODP Site 1089—a global signal? Earth Planet Sci Lett 257:245–258
Article
Google Scholar
Clement BM, Kent DV (1991) A southern hemisphere record of the Matuyama–Brunhes polarity reversal. Geophys Res Lett 18:81–984
Article
Google Scholar
Coe RS, Singer BS, Pringle MS, Zhao XX (2004) Matuyama–Brunhes reversal and Kamikatsura event on Maui: paleomagnetic directions, Ar-40/Ar-39 ages and implications. Earth Planet Sci Lett 222:667–684. doi:10.1016/j.epsl.2004.03.003
Article
Google Scholar
Day R, Fuller M, Schmidt VA (1977) Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys Earth Planet Int 13:260–267
Article
Google Scholar
Dreyfus GB, Raisbeck GM, Parrenin F, Jouzel J, Guyodo Y, Nomade S, Mazaud A (2008) An ice core perspective on the age of the Matuyama–Brunhes boundary. Earth Planet Sci Lett 274:151–156
Article
Google Scholar
Dunlop DJ (2002) Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 1. Theoretical curves and tests using titanomagnetite data. J Geophys Res 107(B3):2056. doi:10.1029/2001JB000486
Article
Google Scholar
Elderfield H, Ferretti P, Greaves M, Crowhurst S, McCave IN, Hodell D, Piotrowski AM (2012) Evolution of ocean temperature and ice volume through the Mid-Pleistocene climate transition. Science 337:704–709. doi:10.1126/science.1221294
Article
Google Scholar
Guyodo Y, Valet JP (1999) Global changes in intensity of the Earth’s magnetic field during the past 800 kyr. Nature 399(6733):249–252
Article
Google Scholar
Hartl P, Tauxe L (1996) A precursor to the Matuyama/Brunhes transition-field instability as recorded in pelagic sediments. Earth Planet Sci Lett 138:121–135
Article
Google Scholar
Hoffman KA, Mochizuki N (2012) Evidence of a partitioned dynamo reversal process from paleomagnetic recordings in Tahitian lavas. Geophys Res Lett 39:L06303. doi:10.1029/2011GL050830
Article
Google Scholar
Horng CS, Roberts AP, Liang WT (2003) A 2.14-Myr astronomically tuned record of relative geomagnetic paleointensity from the western Philippine Sea. J Geophys Res 108:2059. doi:10.1029/2001JB001698
Article
Google Scholar
Hyodo M, Katoh S, Kitamura A, Takasaki K, Matsushita H, Kitaba I, Tanaka I, Nara M, Matsuzaki M, Dettman DL, Okada M (2016) High resolution stratigraphy across the early-middle Pleistocene boundary from a core of the Kokumoto Formation at Tabuchi, Chiba Prefecture, Japan. Quat Int 397:16–26. doi:10.1016/j.quaint.2015.03.031
Article
Google Scholar
Inoue S, Yamazaki T (2010) Geomagnetic relative paleointensity chronostratigraphy of sediment cores from the Okhotsk Sea. Palaeogeogr Palaeoclimatol Palaeoecol 291:253–266. doi:10.1016/j.palaeo.2010.02.037
Article
Google Scholar
Ito M (1998) Submarine fan sequences of the lower Kazusa Group, a Plio-Pleistocene forearc basin fill in the Boso Peninsula, Japan. Sediment Geol 122:69–938
Article
Google Scholar
Ito M, Katsura Y (1992) Inferred glacio-eustatic control for high-frequency depositional sequences of the Plio-Pleistocene Kazusa Group, a forearc basin fill in Boso Peninsula, Japan. Sediment Geol 80:67–75
Article
Google Scholar
Ito M, Kameo M, Satoguchi Y, Masuda F, Hiroki Y, Takano O, Nakajima T, Suzuki N (2016) Neogene-Quaternary sedimentary successions. In: Moreno T, Wallis S, Kojima T, Gibbons W (eds) The geology of Japan. Geological Society of London, London, pp 309–337
Google Scholar
Katsura Y (1984) Depositional environments of the Plio-Pleistocene Kazusa Group, Boso Peninsula, Japan. Sci Rep Inst Geosci Univ Tsukuba Sect B Geol Sci 5:69–104
Google Scholar
Kazaoka O, Suganuma Y, Okada M, Kameo K, Head MJ, Yoshida T, Sugaya M, Kameyama S, Ogitsu I, Nirei H, Aida N, Kumai H (2015) Stratigraphy of the Kazusa Group, Chiba Peninsula, Central Japan: an expanded and highly-resolved marine sedimentary record from the Lower and Middle Pleistocene. Quat Int 383:116–134
Article
Google Scholar
Kiefer T, Sarnthein M, Erlenkeuser H, Grootes PM, Roberts AP (2001) North Pacific response to millennial-scale changes in ocean circulation over the last 60 kyr. Paleoceanography 16:179–189
Article
Google Scholar
Kirschvink JL (1980) The least-squares line and plane and the analysis of palaeomagnetic data. Geophys J R Astron Soc 62(3):699–718. doi:10.1111/j.1365-246X.1980.tb02601.x
Koyama M, Kitazato H (1989) Paleomagnetic evidence for Pleistocene clockwise rotation in the Oiso Hills: a possible record of interaction between the Philippine Sea plate and northeast Japan. In: Hillhouse JW (ed) Deep structure and past kinematics of accreted terranes, vol 50., Geophysics monographsAmerican Geophysical Union, Washington, pp 249–265
Chapter
Google Scholar
Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing rock clocks of earth history. Science (80-) 320:500–504
Article
Google Scholar
Laj C, Kissel C, Mazaud A, Channell JET, Beer J (2000) North Atlantic palaeointensity stack since 75 ka (NAPIS-75) and the duration of the Laschamp event. Philos Trans R Soc Lond A 358:1009–1025
Article
Google Scholar
Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003. doi:10.1029/2004PA001071
Google Scholar
Lowrie W (1990) Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys Res Lett 17:159–162
Article
Google Scholar
Macri P, Sagnotti L, Dinarès-Turell J, Caburlotto A (2010) Relative geomagnetic paleointensity of the Brunhes Chron and the Matuyama–Brunhes precursor as recorded in sediment core from Wilkes Land Basin (Antarctica). Phys Earth Planet Int 179:72–86
Article
Google Scholar
Mazaud A, Channell JET, Stoner JS (2012) Relative paleointensity and environmental magnetism since 1.2 Ma at IODP site U1305 (Eirik Drift, NW Atlantic). Earth Planet Sci Lett 357–358:137–144
Article
Google Scholar
Mazaud A, Channell JET, Stoner JS (2015) The paleomagnetic record at IODP Site U1307 back to 2.2 Ma (Eirik Drift, off south Greenland). Earth Planet Sci Lett 429:82–89
Article
Google Scholar
Muxworthy AR, Roberts AP (2007) First-order reversal curve (FORC) diagrams. In: Gubbins D, Herrero-Bervera E (eds) Encyclopedia of geomagnetism and paleomagnetism. Springer, London, pp 266–272
Chapter
Google Scholar
Niitsuma N (1971) Detailed study of the sediments recording the Matuyama–Brunhes geomagnetic reversal. Sci Rep Tohoku Univ 2nd Ser (Geol) 43:1–39
Google Scholar
Nishida N, Kazaoka O, Izumi K, Suganuma Y, Okada M, Yoshida T, Ogitsu I, Nakazato H, Kameyama S, Kagawa A, Morisaki M, Nirei N (2016) Sedimentary processes and depositional environments of a continuous marine succession across the Lower–Middle Pleistocene boundary: Kokumoto Formation, Kazusa Group, central Japan. Quat Int 397:3–15
Article
Google Scholar
Oda M (1977) Planktonic foraminiferal biostratigraphy of the late Cenozoic sedimentary sequence, Central Honshu, Japan. Sci Rep Tohoku Univ 2nd Ser (Geol) 48:1–76
Google Scholar
Okada M, Niitsuma N (1989) Detailed paleomagnetic records during the Brunhes–Matuyama geomagnetic reversal and a direct determination of depth lag for magnetization in marine sediments. Phys Earth Planet Int 56:133–150
Article
Google Scholar
Okada M, Tokoro Y, Uchida Y, Arai Y, Saito K (2012) An integrated stratigraphy around the Plio-Pleistocene boundary interval in the Chikura Group, southernmost part of the Boso Peninsula, central Japan, based on data from paleomagnetic and oxygen isotopic analyses. J Geol Soc Jpn 118:97–108 (in Japanese with English abstract)
Article
Google Scholar
Pickering KT, Souter C, Oba T, Taira A, Schaaf M, Platzman E (1999) Glacio-eustatic control on deep-marine clastic forearc sedimentation, Pliocene–mid-Pleistocene (c. 1180–600 ka) Kazusa Group, SE Japan. J Geol Soc Lond 156:125–136
Article
Google Scholar
Pike CR, Roberts AP, Verosub KL (1999) Characterizing interactions in fine magnetic particle systems using first order reversal curves. J. Appl. Phys. 85:6660–6667
Article
Google Scholar
Pilans B, Gibbard PL (2012) The quaternary period. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 980–1009
Google Scholar
Raisbeck GM, Yiou F, Cattani O, Jouzel J (2006) Be-10 evidence for the Matuyama–Brunhes geomagnetic reversal in the EPICA Dome C ice core. Nature 444:82–84
Article
Google Scholar
Renne PR, Balco G, Ludwig KR, Mundil R, Min K (2011) Response to the comment by W.H. Schwarz et al. on “Joint determination of 40 K decay constants and 40Ar∗/40 K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by P.R. Renne et al. (2010). Geochim Cosmochim Acta 75:5097–5100. doi:10.1016/j.gca.2011.06.021
Article
Google Scholar
Roberts AP, Cui Y, Verosub KL (1995) Wasp-waisted hysteresis loops: mineral magnetic characteristics and discrimination of components in mixed magnetic systems. J Geophys Res 100:17909–17924. doi:10.1029/95JB00672
Article
Google Scholar
Roberts AP, Pike CR, Verosub KL (2000) First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. J Geophys Res 105:28461–28475
Article
Google Scholar
Roberts AP, Taux L, Heslop D (2013) Magnetic paleointensity stratigraphy and high-resolution Quaternary geochronology: successes and future challenges. Quat Sci Rev 61:1–16
Article
Google Scholar
Sagnotti L, Scardia G, Giaccio B, Liddicoat JC, Nomade S, Renne PR, Sprain CJ (2014) Extremely rapid directional change during Matuyama–Brunhes geomagnetic polarity reversal. Geophys J Int 199:1110–1124. doi:10.1093/gji/ggu287
Article
Google Scholar
Sagnotti L, Giaccio B, Liddicoat JC, Nomade S, Renne PR, Scardia G, Sprain CJ (2016) How fast was the Matuyama–Brunhes geomagnetic reversal? A new subcentennial record from the Sulmona Basin, central Italy. Geophys J Int 204:798–812. doi:10.1093/gji/ggv486
Article
Google Scholar
Sato T, Takayama T, Kato M, Kudo T, Kameo K (1988) Calcareous microfossil biostratigraphy of the uppermost Cenozoic formations distributed in the coast of the Japan Sea, part 4: conclusion. J Jpn Assoc Pet Technol 53:474–491 (in Japanese with English abstract)
Google Scholar
Seno T, Takano T (1989) Seismotectonics at the trench–trench–trench triple junction off central Honshu. Pure Appl Geophys 129:27–40
Article
Google Scholar
Shackleton NJ, Hall MA (1984) Oxygen and carbon isotope stratigraphy of Deep Sea Drilling Project hole 552A: Plio-Pleistocene glacial history. Init Rep Deep Sea Drill Proj 81:599–609
Google Scholar
Shackleton NJ, Berger A, Peltier WR (1990) An alternative astronomical calibration of the Lower Pleistocene timescale based on ODP Site 677. Trans R Soc Edinb Earth Sci 81:251–261
Article
Google Scholar
Singer BS, Hoffman KA, Coe RS, Brown LL, Jicha BR, Pringle MS, Chauvin A (2005) Structural and temporal requirements for geomagnetic field reversal deduced from lava flows. Nature 434:633–636
Article
Google Scholar
Stoner JS, Channell JET, Hillaire-Marcel C, Kissel C (2000) Geomagnetic paleointensity and environmental record from Labrador Sea core MD95-2024: global marine sediment and ice core chronostratigraphy for the last 110 kyr. Earth Planet Sci Lett 183:161–177
Article
Google Scholar
Suganuma Y, Yamazaki T, Kanamatsu T, Hokanishi N (2008) Relative paleointensity record during the last 800 ka from the equatorial Indian Ocean: implication for relationship between inclination and intensity variations. Geochem Geophys Geosyst 9:Q02011. doi:10.1029/2007GC001723
Suganuma Y, Yamazaki T, Kanamatsu T (2009) South Asian monsoon variability during the past 800 kyr revealed by rock magnetic proxies. Quat Sci Rev 28:926–938
Article
Google Scholar
Suganuma Y, Yokoyama Y, Yamazaki T, Kawamura K, Horng CS, Matsuzaki H (2010) 10Be evidence for delayed acquisition of remanent magnetization in marine sediments: implication for a new age for the Matuyama–Brunhes boundary. Earth Planet Sci Lett 296:443–450
Article
Google Scholar
Suganuma Y, Okuno J, Heslop D, Roberts AP, Yamazaki T, Yokoyama Y (2011) Post-depositional remanent magnetization lock-in for marine sediments deduced from Be-10 and paleomagnetic records through the Matuyama–Brunhes boundary. Earth Planet Sci Lett 311:39–52
Article
Google Scholar
Suganuma Y, Okada M, Horie K, Kaiden H, Takehara M, Senda R, Kimura J, Kawamura K, Haneda Y, Kazaoka O, Head MJ (2015) Age of Matuyama–Brunhes boundary constrained by U–Pb zircon dating of a widespread tephra. Geology 43:491–494
Article
Google Scholar
Tauxe L (1993) Sedimentary records of relative paleointensity of the geomagnetic-field—theory and practice. Rev Geophys 31:319–354
Article
Google Scholar
Tauxe L, Mullender TAT, Pick T (1996) Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis. J Geophys Res 101:571–583. doi:10.1029/95JB03041
Article
Google Scholar
Tsuji T, Miyata Y, Okada M, Mita I, Nakagawa H, Sato Y, Nakamizu M (2005) High-resolution chronology of the lower Pleistocene Otadai and Umegase Formations of the Kazusa Group, Boso Peninsula, central Japan: chronostratigraphy of the JNOC TR-3 cores based on oxygen isotope, magnetostratigraphy and calcareous nannofossil. J Geol Soc Jpn 111:1–20 (in Japanese with English abstract)
Article
Google Scholar
Tsunakawa H, Okada M, Niitsuma N (1999) Further application of the deconvolution method of post-depositional DRM to the precise record of the Matuyama–Brunhes reversal in the sediments from the Bose Peninsula, Japan. Earth Planets Space 51:169–173. doi:10.1186/BF03352221
Article
Google Scholar
Valet JP (2003) Time variations in geomagnetic intensity. Rev Geophys. doi:10.1029/2001RG000104
Valet JP, Fournier A (2016) Deciphering records of geomagnetic reversals. Rev Geophys. doi:10.1002/2015RG000506
Google Scholar
Valet JP, Meynadier L, Guyodo Y (2005) Geomagnetic dipole strength and reversal rate over the past two million years. Nature 435:802–880
Article
Google Scholar
Valet JP, Fournier A, Courtillot V, Herrero-Bervera E (2012) Dynamical similarity of geomagnetic field reversals. Nature 490:89–93
Article
Google Scholar
Valet JP, Bassinot F, Bouilloux A, Bourlès D, Nomade S, Guillou V, Lopes F, Thouveny N, Dewilde F (2014) Geomagnetic, cosmogenic and climatic changes across the last geomagnetic reversal from Equatorial Indian Ocean sediments. Earth Planet Sci Lett 397:67–79
Article
Google Scholar
Wu Y, Ouyang T, Qiu S, Rao Z, Zhu Z (2015) A sedimentary paleomagnetic record of the upper Jaramillo transition from the Lantian Basin in China. Earth Planets Space 67:1–12. doi:10.1186/s40623-015-0341-9
Article
Google Scholar
Yamamoto Y, Yamazaki T, Kanamatsu T et al (2007) Relative paleointensity stack during the last 250 kyr in the northwest Pacific. J Geophys Res 112:B01104. doi:10.1029/2006JB004477
Google Scholar
Yamazaki T (1999) Relative paleointensity of the geomagnetic field during Brunhes Chron recorded in North Pacific deep-sea sediment cores: orbital influence? Earth Planet Sci Lett 169:23–35
Article
Google Scholar
Yamazaki T, Kanamatsu T (2007) A relative paleointensity record of the geomagnetic field since 1.6 Ma from the North Pacific. Earth Planets Space 59:785–794. doi:10.1186/BF03352741
Article
Google Scholar
Yamazaki T, Oda H (2005) A geomagnetic paleointensity stack between 0.8 and 3.0 Ma from equatorial Pacific sediment cores. Geochem Geophys Geosyst 6:Q11H20. doi:10.1029/2005GC001001
Article
Google Scholar
Zijderveld JDA (1967) A.C. demagnetization of rocks: analysis of result. In: Collinson DW, Creer KM, Runcorn SK (eds) Methods in paleomagnetism. Elsevier, New York, pp 254–286
Google Scholar