Aagaard BT, Brocher TM, Dolenc D, Dreger D, Graves RW, Harmsen S, Hartzell S, Larsen S, Zoback ML (2008) Ground-motion modeling of the 1906 San Francisco earthquake. Part I: validation using the 1989 Loma Prieta earthquake. Bull Seismol Soc Am 98(2):989–1011. doi:10.1785/0120060409
Article
Google Scholar
Akaike H (1980) Likelihood and the Bayes procedure. Trab Estad Invest Oper 31(1):143–166. doi:10.1007/BF02888350
Article
Google Scholar
Aoi S, Honda R, Morikawa N, Sekiguchi H, Suzuki H, Hayakawa Y, Kunugi T, Fujiwara H (2008) Three-dimensional finite difference simulation of long-period ground motions for the 2003 Tokachi-oki, Japan, earthquake. J Geophys Res 113(7):B07302. doi:10.1029/2007JB005452
Google Scholar
Asano K, Iwaki A, Iwata T (2011) Estimation of interstation Green’s functions in the long-period range (2–10 s) from continuous records of F-net broadband seismograph network in southwestern Japan. In: Proceedings of the 4th IASPEI/IAEE international symposium on effects of surface geology on seismic motion, Santa Barbara, 23–26 August 2011
Asano K, Iwata T, Sekiguchi H (2012) Application of seismic interferometry in the Osaka basin for validating the three-dimensional basin velocity structure model. In: Proceedings of the 15th world conference on earthquake engineering, Lisbon, 24–28 September 2012
Asano K, Iwata T, Sekiguchi H, Somei K, Miyakoshi K, Aoi S, Kunugi T (2016a) Surface wave group velocity tomography in the Osaka sedimentary basin, Japan, using ambient noise cross-correlation functions. In: Proceedings of the 5th IASPEI/IAEE international symposium on effects of surface geology on seismic motion, Taipei, 15–17 August 2016
Asano K, Sekiguchi H, Iwata T, Yoshimi M, Hayashida T, Saomoto H, Horikawa H (2016b) Modelling of wave propagation and attenuation in the Osaka sedimentary basin, western Japan, during the 2013 Awaji Island earthquake. Geophys J Int 204(3):1678–1694. doi:10.1093/gji/ggv543
Article
Google Scholar
Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shapiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169(3):1239–1260. doi:10.1111/j.1365-246X.2007.03374.x
Article
Google Scholar
Boaga J, Cassiani G, Strobbia CL, Vignoli G (2013) Mode misidentification in Rayleigh waves: ellipticity as a cause and a cure. Geophysics 78(4):EN17–EN18. doi:10.1190/GEO2012-0194.1
Article
Google Scholar
Boué P, Denolle M, Hirata N, Nakagawa S, Beroza GC (2016) Beyond basin resonance: characterizing wave propagation using a dense array and the ambient seismic field. Geophys J Int 206(2):1261–1272. doi:10.1093/gji/ggw205
Article
Google Scholar
Chimoto K, Yamanaka H (2011) Tomographic analysis of surface wave slowness estimated with seismic interferometric processing of continuous microtremor data in the southern Kanto area, Japan. BUTSURI-TANSA (Geophys Explor) 64(5):331–343. doi:10.3124/segj.64.331
(in Japanese with English abstract)
Article
Google Scholar
Denolle MA, Miyake H, Nakagawa S, Hirata N, Beroza GC (2014) Long-period seismic amplification in the Kanto Basin from the ambient seismic field. Geophys Res Lett 41(7):2319–2325. doi:10.1002/2014GL059425
Article
Google Scholar
Dhakal Y, Yamanaka H (2013) An evaluation of 3-D velocity models of the Kanto basin for long-period ground motion simulations. J Seismol 17(3):1073–1102. doi:10.1007/s10950-013-9373-4
Article
Google Scholar
Dziewonski A, Bloch S, Landisman M (1969) A technique for the analysis of transient seismic signals. Bull Seismol Soc Am 59(1):427–444
Google Scholar
Furumura T, Koketsu K (1998) Specific distribution of ground motion during the 1995 Kobe earthquake and its generation mechanism. Geophys Res Lett 25(6):785–788. doi:10.1029/98GL50418
Article
Google Scholar
Gao H, Shen Y (2012) Validation of shear-wave velocity models of the Pacific Northwest. Bull Seismol Soc Am 102(6):2611–2621. doi:10.1785/0120110336
Article
Google Scholar
Graves RW (1996) Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull Seismol Soc Am 86(4):1091–1106
Google Scholar
Guo Y, Koketsu K, Miyake H (2016) Propagation mechanism of long-period ground motions for offshore earthquakes along the Nankai trough: effects of the accretionary wedge. Bull Seismol Soc Am 106(3):1176–1197. doi:10.1785/0120150315
Article
Google Scholar
Hatayama K, Matsunami K, Iwata T, Irikura K (1995) Basin-induced Love waves in the eastern part of the Osaka basin. J Phys Earth 43(2):131–155. doi:10.4294/jpe1952.43.131
Article
Google Scholar
Hayashida T, Yoshimi M, Horikawa H (2014) Estimation of surface wave group velocity beneath the Chukyo area, Japan. Zisin 2 (J Seismol Soc Jpn) 66(4):127–145. doi:10.4294/zisin.66.127
(in Japanese with English abstract)
Google Scholar
Herrmann RB (1979) SH-wave generation by dislocation source—a numerical study. Bull Seismol Soc Am 69(1):1–15
Google Scholar
Horikawa H, Mizuno K, Ishiyama T, Satake K, Sekiguchi H, Kase Y, Sugiyama Y, Yokota H, Suehiro M, Yokokura T, Iwabuchi Y, Kitada N, Pitarka A (2003) A three-dimensional subsurface structure model beneath the Osaka sedimentary basin, southwest Japan, with fault-related structural discontinuities. Ann Report Active Fault Paleoearthquake Res Geol Survey Japan 3:225–259 (in Japanese with English abstract)
Google Scholar
Horike M, Takeuchi Y, Imai S, Fuzita T, Yokota H, Noda T, Ikawa T (1996) Survey of the subsurface structure in the east of Osaka basin. Zisin 2 (J Seismol Soc Jpn) 49(2):193–203. doi:10.4294/zisin1948.49.2_193
(in Japanese with English abstract)
Google Scholar
Ikebe N, Iwatsu J, Takenaka J (1970) Quaternary geology of Osaka with special reference to land subsidence. J Geosci Osaka City Univ 13:39–98
Google Scholar
Inoue N, Nakagawa K, Ryoki K (1998) Gravity anomalies and basement structure in Osaka plain. BUTSURI-TANSA (Geophys Explor) 51(1):1–16 (in Japanese with English abstract)
Google Scholar
Inoue N, Kitada N, Takemura K, Fukuda K, Emura T (2013) Three-dimensional subsurface structure model of Kansai International Airport by integration of borehole data and seismic profiles. Geotech Geol Eng 31(3):881–890. doi:10.1007/s10706-012-9568-4
Article
Google Scholar
Itihara M, Yoshikawa S, Kamei T (1997) The Pliocene–Pleistocene boundary in Japan: the Osaka Group, Kinki district. In: Van Couvering JA (ed) The Pleistocene boundary and beginning of the Quaternary. World and regional geology, vol 9. Cambridge University Press, Cambridge, pp 239–243. doi:10.1017/CBO9780511585760.026
Google Scholar
Ito Y, Takemura K, Kawabata D, Tanaka Y, Nakaseko K (2001) Quaternary tectonic warping and strata formation in the southern Osaka Basin inferred from reflection seismic interpretation and borehole sequences. J Asian Earth Sci 20(1):45–58. doi:10.1016/S1367-9120(01)00019-0
Article
Google Scholar
Ito M, Kameo K, Satoguchi Y, Masuda F, Hiroki Y, Takano O, Nakajima T, Suzuki N (2016) Neogene–Quaternary sedimentary successions. In: Moreno T, Wallis S, Kojima T, Gibbons W (eds) The geology of Japan. Geological Society of London, London, pp 309–337
Google Scholar
Iwabuchi Y, Nishikawa H, Noda N, Yukimatsu T, Taga M, Miyano M, Sakai K, Fukazawa M (2000) Basement and active structures revealed by the seismic reflection survey in Osaka bay. Rep Hydrogr Res 36:1–23 (in Japanese with English abstract)
Google Scholar
Iwaki A, Iwata T (2010) Simulation of long-period ground motion in the Osaka sedimentary basin: performance estimation and the basin structure effects. Geophys J Int 181(2):1062–1076. doi:10.1111/j.1365-246X.2010.04556.x
Google Scholar
Iwaki A, Iwata T (2011) Estimation of three-dimensional boundary shape of the Osaka sedimentary basin by waveform inversion. Geophys J Int 186(3):1255–1278. doi:10.1111/j.1365-246X.2011.05102.x
Article
Google Scholar
Iwasaki Y, Kagawa T, Sawada S, Matsuyama N, Ohshima K, Ikawa T, Onishi M (1994) Basement structure by air-gun reflection survey in Osaka Bay, Southwest Japan. Zisin 2 (J Seismol Soc Jpn) 46(4):395–403. doi:10.4294/zisin1948.46.4_395
(in Japanese with English abstract)
Google Scholar
Iwata T, Kagawa T, Petukhin A, Ohnishi Y (2008) Basin and crustal velocity structure models for the simulation of strong ground motions in the Kinki area, Japan. J Seism 12(2):223–234. doi:10.1007/s10950-007-9086-7
Article
Google Scholar
Iwata T, Kubo H, Asano K, Sato K, Aoi S (2016) Long-period ground motion characteristics and simulations in the Osaka basin during the 2011 great Tohoku earthquake. In: Proceedings of the 5th international symposium for effects of surface geology on seismic motion, Taipei, 15–17 August, 2016
Kagawa T, Sawada S, Iwasaki Y, Emi S (1990) Underground velocity structure of Osaka basin upon explosion refraction data. Zisin 2 (J Seismol Soc Jpn) 43(4):527–537. doi:10.4294/zisin1948.51.1_31
(in Japanese with English abstract)
Google Scholar
Kagawa T, Sawada S, Iwasaki Y, Nanjo A (1993) Modeling the deep sedimentary structure in the Osaka basin. In: Proceedings of the 22nd JSCE earthquake engineering symposium, Kyoto, 26–28 July 1993. doi:10.2208/proee1957.22.199
(in Japanese)
Kagawa T, Sawada S, Iwasaki Y, Nanjo A (1998) S-wave velocity structure model of the Osaka sedimentary basin derived from microtremor array observations. Zisin 2 (J Seismol Soc Jpn) 51(1):31–40. doi:10.4294/zisin1948.51.1_31
(in Japanese with English abstract)
Google Scholar
Kagawa T, Zhao B, Miyakoshi K, Irikura K (2004) Modeling of 3D basin structures for seismic wave simulations of the Osaka basin. Bull Seismol Soc Am 94(4):1353–1368. doi:10.1785/012003165
Article
Google Scholar
Lawson CL, Hanson RJ (1974) Solving least squares problems. Prentice-Hall, Englewood Cliffs
Google Scholar
Lees JM, Crosson RS (1989) Tomographic inversion for three-dimensional velocity structure at Mount St. Helens using earthquake data. J Geophys Res 94(B5):5716–5728. doi:10.1029/JB094iB05p05716
Article
Google Scholar
Levander AR (1988) Fourth-order finite-difference P-SV seismograms. Geophysics 53(11):1425–1436. doi:10.1190/1.1442422
Article
Google Scholar
Lin F-C, Moschetti MP, Ritzwoller MH (2008) Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity map. Geophys J Int 173(1):281–298. doi:10.1111/j.1365-246X.2008.03720.x
Article
Google Scholar
Lin F-C, Tsai TC, Schmandt B (2014) 3-D crustal structure of the western United States: application of Rayleigh-wave ellipticity extracted from noise cross-correlations. Geophys J Int 198(2):656–670. doi:10.1093/gji/ggu160
Article
Google Scholar
Ma S, Prieto GA, Beroza GC (2008) Testing community velocity models for southern California using the ambient seismic field. Bull Seismol Soc Am 98(6):2694–2714. doi:10.1785/0120080947
Article
Google Scholar
Maufroy E, Chaljub E, Hollender F, Kristek J, Moczo P, Klin P, Priolo E, Iwaki A, Iwata T, Etienne V, De Martin F, Theodoulidis NP, Manakou M, Guyonnet-Benaize C, Pitilakis K, Bard P-Y (2015) Earthquake ground motion in the Mygdonian basin, Greece: the E2VP verification and validation of 3D numerical simulation up to 4 Hz. Bull Seismol Soc Am 105(3):1398–1418. doi:10.1785/0120140228
Article
Google Scholar
Meza-Fajardo KC, Papageorgiou AS (2008) A nonconvolutional, splitfield, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis. Bull Seismol Soc Am 98(4):1811–1836. doi:10.1785/0120070223
Article
Google Scholar
Minami Y, Mizuochi Y, Matsuoka T, Haraguchi T, Motoki K (2014) Deep S-wave velocity structure in Osaka plains urban area estimated by microtremor survey method. J Jpn Soc Eng Geol 55(3):110–117. doi:10.5110/jjseg.55.110
(in Japanese with English abstract)
Article
Google Scholar
Nakagawa K, Ryoki K, Muto N, Nishimura S, Ito K (1991) Gravity anomaly map and inferred basement structure in Osaka Plain, Central Kinki, Southwest Japan. J Geosci Osaka City Univ 34:103–117
Google Scholar
Sabra KG, Gerstoft P, Roux P, Kuperman WA, Fehler MC (2005) Extracting time-domain Green’s function estimates from ambient seismic noise. Geophys Res Lett 32(3):L03310. doi:10.1029/2004GL021862
Article
Google Scholar
Saito M (1988) DISPER80: a subroutine package for the calculation of seismic normal mode solutions. In: Doornbos DJ (ed) Seismological algorithms: computational methods and computer programs. Academic Press, London
Google Scholar
Seats KJ, Lawrence JF, Prieto GA (2012) Improved ambient noise correlation functions using Welch’s method. Geophys J Int 188(2):513–523. doi:10.1111/j.1365-246X.2011.05263.x
Article
Google Scholar
Sekiguchi H, Yoshimi M, Asano K, Horikawa H, Saomoto H, Hayashida T, Iwata T (2013) Newly developed 3D velocity structure model of the Osaka sedimentary basin. In: Abstracts of Japan Geoscience Union meeting, Chiba, 19–24 May 2013
Sekiguchi H, Asano K, Iwata T, Yoshimi M, Horikawa H, Saomoto H, Hayashida T (2016) Construction of 3D velocity structure model of Osaka sedimentary basin. In: Proceedings of the 5th international symposium for effects of surface geology on seismic motion, Taipei, 15–17 August, 2016
Shapiro NM, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett 31(7):L07614. doi:10.1029/2004GL019491
Article
Google Scholar
Taborda R, Azizzadeh-Roodpish S, Khoshnevis N, Cheng K (2016) Evaluation of the southern California seismic velocity model through simulation of recorded events. Geophys J Int 205(3):1342–1364. doi:10.1093/gji/ggw085
Article
Google Scholar
Takagi R, Nakahara H, Kono T, Okada T (2014) Separating body and Rayleigh waves with cross terms of the cross-correlation tensor of ambient noise. J Geophys Res 119(3):2005–2018. doi:10.1002/2013JB010824
Article
Google Scholar
Takemura S, Akatsu M, Masuda K, Kajikawa K, Yoshimoto K (2015) Long-period ground motions in a laterally inhomogeneous large sedimentary basin: observations and model simulations of long-period surface waves in the northern Kanto Basin, Japan. Earth Planets Space 67:33. doi:10.1186/s40623-015-0201-7
Article
Google Scholar
Toki K, Irikura K, Kagawa T (1995) Strong motion records in the source area of the Hyogoken-Nambu earthquake, January 17, 1995, Japan. J Nat Disas Sci 16(2):23–30
Google Scholar
Toriumi I, Takeuchi Y, Ohba S, Horike M, Inoue Y, Baba K (1990) Underground structure in the Osaka plain by Hokko explosions. Zisin 2 (J Seismol Soc Jpn) 43(3):373–378. doi:10.4294/zisin1948.43.3_373
(in Japanese with English abstract)
Google Scholar
Uebayashi H (2003) Extrapolation of irregular subsurface structures using the horizontal-to-vertical spectral ratio of long-period microtremors. Bull Seimol Soc Am 93(2):570–582. doi:10.1785/0120020137
Article
Google Scholar
Viens L, Koketsu K, Miyake H, Sakai S, Nakagawa S (2016) Basin-scale Green’s functions from the ambient seismic field recorded by MeSO-net stations. J Geophys Res 121(4):2507–2520. doi:10.1002/2016JB012796
Article
Google Scholar
Wapenaar K, Fokkema J (2006) Green’s function representations for seismic interferometry. Geophysics 71(4):SI33–SI46. doi:10.1190/1.2213955
Article
Google Scholar
Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans Am Geophys Union 79:579
Article
Google Scholar
Yamanaka H, Chimoto K, Moroi T, Ikeura T, Koketsu K, Sakaue M, Nakai S, Sekiguchi T, Oda Y (2010) Estimation of surface-wave group velocity in the southern Kanto area using seismic interferometric processing of continuous microtremor data. BUTSURI-TANSA (Geophys Explor) 63(5):409–425. doi:10.3124/segj.63.409
(in Japanese with English abstract)
Article
Google Scholar
Yoshikawa S, Mitamura M, Nakagawa K, Nagahashi Y, Iwasaki Y, Echigo T, Tsujie K, Kitada N (1998) Lithostratigraphy and tephrostratigraphy of the Tsumori, Otemae and Hama drilling cores in the Osaka Plain, central Japan. J Geol Soc Jpn 104(7):462–476. doi:10.5575/geosoc.104.462
(in Japanese with English abstract)
Article
Google Scholar
Yoshimi M (2012) Resolution of the SPAC, CCA, nc-CCA, and V-method for microtremor array survey on deep sedimentary basin—case of the Osaka basin. J Jpn Soc Civil Eng A1 (Struct Eng Earthq Eng) 68(4):I_220–I_226. doi:10.2208/jscejseee.68.I_220
(in Japanese with English abstract)
Google Scholar
Zeng C, Zia J, Miller RD, Tsoflias GP (2011) Application of the multiaxial perfectly matched layer (M-PML) to near-surface seismic modeling with Rayleigh waves. Geophysics 76(3):T43–T52. doi:10.1190/1.3560019
Article
Google Scholar