Ahn HS, Kidane T, Yamamoto Y, Otofuji YI (2016) Low geomagnetic field intensity in the Matuyama Chron: palaeomagnetic study of a lava sequence from Afar depression, East Africa. Geophys J Int 204:127–146. https://doi.org/10.1093/gji/ggv303
Article
Google Scholar
Arai T (1963) Secular variation in the intensity of the past geomagnetic field. M.Sc. Thesis, University of Tokyo
As JA, Zijderveld JDA (1958) Magnetic cleaning of rocks in paleomagnetic research. Geophys J 1:308–319
Google Scholar
Berna F, Behar A, Shahack-Gross R, Berg J, Boaretto E, Gilboa A, Sharon I, Shalev S, Shilstein S, Yahalom-Mack N, Zorn JR, Weiner S (2007) Sediments exposed to high temperatures: reconstructing pyrotechnological processes in Late Bronze and Iron Age Strata at Tel Dor (Israel). J Archaeol Sci 34:358–373. https://doi.org/10.1016/j.jas.2006.05.011
Article
Google Scholar
Brown MC, Donadini F, Korte M, Nilsson A, Korhonen K, Lodge A, Lengyel SN, Constable CG (2015) GEOMAGIA50.v3: 1. General structure and modifications to the archeological and volcanic database. Earth Planets Space. https://doi.org/10.1186/s40623-015-0232-0
Google Scholar
Cai S, Tauxe L, Deng C, Pan Y, Jin G, Zheng J, Xie F, Qin H, Zhu R (2014) Geomagnetic intensity variations for the past 8 kyr: new archaeointensity results from Eastern China. Earth Planet Sci Lett 392:217–229. https://doi.org/10.1016/j.epsl.2014.02.030
Article
Google Scholar
Cai S, Chen W, Tauxe L, Deng C, Qin H, Pan Y, Zhu R (2015) New constraints on the variation of the geomagnetic field during the late Neolithic period: archaeointensity results from Sichuan, southwestern China. J Geophys Res 120:2056–2069
Article
Google Scholar
Cai S, Jin G, Tauxe L, Deng C, Qin H, Pan Y, Zhu R (2017) Archaeointensity results spanning the past 6 kiloyears from eastern China and implications for extreme behaviors of the geomagnetic field. Proc Natl Acad Sci 114:39–44. https://doi.org/10.1073/pnas.1616976114
Article
Google Scholar
Coe RS (1967) Paleo-intensities of the Earth’s magnetic field determined from tertiary and quaternary rocks. J Geophys Res 72:3247–3262
Article
Google Scholar
Coe RS, Grommé S, Mankinen EA (1978) Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low. J Geophys Res 83:1740–1756. https://doi.org/10.1029/JB083iB04p01740
Article
Google Scholar
Cromwell G, Tauxe L, Staudigel H, Ron H (2015) Paleointensity estimates from historic and modern Hawaiian lava flows using glassy basalt as a primary source material. Phys Earth Planet Inter 241:44–56. https://doi.org/10.1016/j.pepi.2014.12.007
Article
Google Scholar
Day RM, Fuller M, Schmidt VA (1977) Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys Earth Planet Inter 13:260–267
Article
Google Scholar
Doi A, Sakamoto N (2002) Baking process of Bizen-yaki pottery. In: Okayama University of Science (ed) Research group for “Okayamaology”. Scientific Research of Bizen-Yaki Pottery. “Okayamaology,” vol 1, Kibito Shuppan, Okayama, pp 38–45 (in Japanese)
Domen H (1977) A single heating method of paleomagnetic field intensity determination applied to old roof tiles and rocks. Phys Earth Planet Inter 13:315–318. https://doi.org/10.1016/0031-9201(77)90115-7
Article
Google Scholar
Doubrovine PV, Tarduno JA (2006) N-type magnetism at cryogenic temperatures in oceanic basalt. Phys Earth Planet Inter 157:46–54. https://doi.org/10.1016/j.pepi.2006.03.002
Article
Google Scholar
Egli R, Chen AP, Winklhofer M, Kodama KP, Horng CS (2010) Detection of noninteracting single domain particles using first-order reversal curve diagrams. Geochem Geophys Geosyst. https://doi.org/10.1029/2009GC002916
Google Scholar
Hatakeyama T, Kitahara Y, Tamai Y, Torii M (2014) Chapter 6: Scientific analysis 2 –Paleomagnetic study for 3 old kilns of Sayama area in Bizen city, Okayama–. In: Archeology Laboratory of Faculty of Biosphere-Geosphere Science, Okayama University of Science (ed) Study of Bizen Oku kiln complex –Study on ancient ceramic production–. Archeology Laboratory of Faculty of Biosphere-Geosphere Science, Okayama University of Science, Okayama, pp 85–105 (in Japanese)
Heider F, Dunlop DJ, Soffel HC (1992) Low-temperature and alternating field demagnetization of saturation remanence and thermoremanence in magnetite grains (0.037 μm to 5 mm). J Geophys Res 97:9371–9381
Article
Google Scholar
Heslop D, Dekkers MJ, Kruiver PP, van Oorschot IHM (2002) Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm. Geophys J Int 148:58–64. https://doi.org/10.1046/j.0956-540x.2001.01558.x
Article
Google Scholar
Hirooka K (1977) Recent trends in archaeomagnetic and palaeomagnetic studies in quaternary research. Daiyonki Kenkyu 15:200–203 (in Japanese with English abstract)
Article
Google Scholar
Hong H, Yu Y, Lee CH, Kim RH, Park J, Doh SJ, Kim W, Sung H (2013) Globally strong geomagnetic field intensity circa 3000 years ago. Earth Planet Sci Lett 383:142–152. https://doi.org/10.1016/j.epsl.2013.09.043
Article
Google Scholar
International Association of Geomagnetism and Aeronomy, Working Group V-MOD (2010) International geomagnetic reference field: the eleventh generation. Geophys J Int 183:1216–1230. https://doi.org/10.1111/j.1365-246X.2010.04804.x
Article
Google Scholar
Itoh A (1987) Chapter XI: Ceramic industry. In: Kondoh Y (ed) Archaeology of Okayama prefecture, 1st edn. Yoshikawa Kobunkan, Tokyo, pp 531–588 (in Japanese)
Google Scholar
Jordanova N, Kovacheva M, Kostadinova M (2004) Archaeomagnetic investigation and dating of Neolithic archaeological site (Kovachevo) from Bulgaria. Phys Earth Planet Inter 147:89–102
Article
Google Scholar
Kameda S (1996) Chronology of the main old kilns in Sanyo area. In: Funayama R, Matsumoto T, Ikeda Y (eds) Sueki catalog, Western Japan, vol 5, 1st edn. Yuzankaku Inc., Tokyo, p 94 (in Japanese)
Google Scholar
Kameda S, Sjiraishi J, Tokusawa K, Imamura K (2014) Chapter 5: Sayama Higashiyama kiln complex 2—Sayama Higashiyama-Oku kiln. In: Archeology Laboratory of Faculty of Biosphere–Geosphere Science, Okayama University of Science (eds) Study of Bizen Oku kiln complex—study on ancient ceramic production. Archeology Laboratory of Faculty of Biosphere-Geosphere Science, Okayama University of Science, Okayama, pp 59–74 (in Japanese)
Kirschvink JL (1980) The least-square line and plane and the analysis of paleomagnetic data. Geophys J R Astron Soc 62:699–718
Article
Google Scholar
Kitazawa K (1970) Intensity of the geomagnetic field in Japan for the past 10,000 years. J Geophys Res 75:7403–7411. https://doi.org/10.1029/JB075i035p07403
Article
Google Scholar
Korhonen K, Donadini F, Riisager P, Pesonen LJ (2008) GEOMAGIA50: an archeointensity database with PHP and MySQL. Geochem Geophys Geosyst. https://doi.org/10.1029/2007GC001893
Google Scholar
Lanos P (2004) Bayesian inference of calibration curves: application to archaeomagnetism. In: Buck CE, Millard AR (eds) Lecture notes in statistics. Tools for constructing chronologies: crossing discipline boundaries. Springer, Berlin, pp 43–82
Chapter
Google Scholar
Mizoguchi K (2013) The archaeology of Japan: From the earliest rice farming villages to the rise of the state. Cambridge University Press, Cambridge, p 371
Book
Google Scholar
Mochizuki N, Tsunakawa H, Oishi Y, Wakai S, Wakabayashi KI, Yamamoto Y (2004) Palaeointensity study of the Oshima 1986 lava in Japan: implications for the reliability of the Thellier and LTD-DHT Shaw methods. Phys Earth Planet Inter 146:395–416. https://doi.org/10.1016/j.pepi.2004.02.007
Article
Google Scholar
Mochizuki N, Tsunakawa H, Shibuya H, Cassidy J, Smith IE (2006) Palaeointensities of the Auckland geomagnetic excursions by the LTD-DHT Shaw method. Phys Earth Planet Inter 154:168–179
Article
Google Scholar
Mochizuki N, Oda H, Ishizuka O, Yamazaki T, Tsunakawa H (2011) Paleointensity variation across the Matuyama–Brunhes polarity transition: observations from lavas at Punaruu Valley, Tahiti. J Geophys Res. https://doi.org/10.1029/2010JB008093
Google Scholar
Mochizuki N, Maruuchi T, Yamamoto Y, Shibuya H (2013) Multi-level consistency tests in paleointensity determinations from the welded tuffs of the Aso pyroclastic-flow deposits. Phys Earth Planet Inter 223:40–54. https://doi.org/10.1016/j.pepi.2013.05.001
Article
Google Scholar
Nagata T, Akimoto S (1961) Chapter III: magnetic properties of rock-forming ferromagnetic minerals. In: Nagata T (ed) Rock magnetism. Maruzen Co Ltd, Tokyo, pp 75–125
Google Scholar
Nagata T, Arai T, Momose K (1963) Secular variation of the geomagnetic total force during the last 5000 years. J Geophys Res 68:5277–5281
Article
Google Scholar
Nagayama U (1936) History of Kibi-gun. Educational Society of Kibi-gun, Okayama (in Japanese)
Google Scholar
Nakajima T, Natsuhara N (1981) Archaeomagnetic dating method. Archaeological library, no 9. New Science Co., Tokyo, p 95 (in Japanese)
National Institute of Advanced Industrial Science and Technology (2017) 1/200,000 Seamless geological map of Japan. gbank.gsj.jp/seamless/2d3d/?center=34.6938, 134.1903&z=13. Accessed 22 Dec 2017 (in Japanese)
Nishikawa H (1966) Chronological study of Sueki in Bizen. Report of the private education in Okayama prefecture (in Japanese)
Oishi Y, Tsunakawa H, Mochizuki N, Yamamoto Y, Wakabayashi KI, Shibuya H (2005) Validity of the LTD-DHT Shaw and Thellier palaeointensity methods: a case study of the Kilauea 1970 lava. Phys Earth Planet Inter 149:243–257. https://doi.org/10.1016/j.pepi.2004.10.009
Article
Google Scholar
Ozima M, Ozima M, Akimoto S (1964) Low temperature characteristics of remanent magnetization of magnetite—self-reversal and recovery phenomena of remanent magnetization. J Geomagn Geoelectr 16:165–177
Article
Google Scholar
Paterson GA (2011) A simple test for the presence of multidomain behavior during paleointensity experiments. J Geophys Res. https://doi.org/10.1029/2011JB008369
Google Scholar
Petschick R (2000) MacDiff Ver. 4.2.3, Manual. Geologisch-Paläontrologisches Institut Johann Wolfgang-Universität Frankfurt am Main Senckenberganlage, Frankfurt am Main
Sakai H, Hirooka K (1986) Archaeointensity determinations from Western Japan. J Geomagn Geoelectr 38:1323–1329
Article
Google Scholar
Sasajima S (1965) Geomagnetic secular variation revealed in the baked earths in West Japan (part 2) change of the field intensity. J Geomagn Geoelectr 17:413–416. https://doi.org/10.5636/jgg.17.413
Article
Google Scholar
Sasajima S, Maenaka K (1966) Intensity studies of the archaeo-secular variation in West Japan, with special reference to the hypothesis of the dipole axis rotation. Mem Coll Sci Kyoto Univ Ser B 33:53–67
Google Scholar
Schomburg J (1991) Thermal reactions of clay minerals: their significance as “archaeological thermometers” in ancient potteries. Appl Clay Sci 6:215–220. https://doi.org/10.1016/0169-1317(91)90026-6
Article
Google Scholar
Shaar R, Tauxe L (2013) Thellier GUI: an integrated tool for analyzing paleointensity data from Thellier-type experiments. Geochem Geophys Geosyst 14:677–692. https://doi.org/10.1002/ggge.20062
Article
Google Scholar
Shiraishi J, Kyoguro S (2002) Distribution of a Bizen-yaki mortar revealed by scientific investigation. In: Research group for “Okayamaology”, Okayama University of Science (eds) Scientific research of Bizen-yaki pottery. “Okayamaology,” vol 1. Kibito Shuppan, Okayama, pp 62–71 (in Japanese)
Tanaka H, Kobayashi T (2003) Paleomagnetism of the late Quaternary Ontake Volcano, Japan: directions, intensities, and excursions. Earth Planets Space 55:189–202. https://doi.org/10.1186/BF03351748
Article
Google Scholar
Tanaka H, Yamamoto Y (2016) Palaeointensities from Pliocene lava sequences in Iceland: emphasis on the problem of Arai plot with two linear segments. Geophys J Int 205:694–714. https://doi.org/10.1093/gji/ggw031
Article
Google Scholar
Tauxe L (2010) Essentials of paleomagnetism. University of California Press, California
Google Scholar
Tauxe L, Staudigel H (2004) Strength of the geomagnetic field in the cretaceous normal superchron: new data from submarine basaltic glass of the troodos ophiolite. Geochem Geophys Geosyst. https://doi.org/10.1029/2003GC000635
Google Scholar
Tauxe L, Mullender TAT, Pick T (1996) Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis. J Geophys Res 101:571–583
Article
Google Scholar
Thellier E, Thellier O (1959) Sur l’intensité du champ magnétique terrestre Dans le passé historique et géologique. Ann Géophys 15:285–376 (in French with English abstract)
Google Scholar
Winklhofer M, Zimanyi GT (2006) Extracting the intrinsic switching field distribution in perpendicular media: a comparative analysis. J Appl Phys 99:08E710. https://doi.org/10.1063/1.2176598
Article
Google Scholar
Yamamoto Y, Tsunakawa H (2005) Geomagnetic field intensity during the last 5 Myr: LTD-DHT Shaw palaeointensities from volcanic rocks of the Society Islands, French Polynesia. Geophys J Int 162:79–114
Article
Google Scholar
Yamamoto Y, Tsunakawa H, Shibuya H (2003) Palaeointensity study of the Hawaiian 1960 lava: Implications for possible causes of erroneously high intensities. Geophys J Int. https://doi.org/10.1046/j.1365-246x.2003.01909.x
Google Scholar
Yamamoto Y, Shibuya H, Tanaka H, Hoshizumi H (2010) Geomagnetic paleointensity deduced for the last 300 kyr from Unzen Volcano, Japan, and the dipolar nature of the Iceland Basin excursion. Earth Planet Sci Lett 293:236–249. https://doi.org/10.1016/j.epsl.2010.02.024
Article
Google Scholar
Yamamoto Y, Torii M, Natsuhara N (2015) Archeointensity study on baked clay samples taken from the reconstructed ancient kiln: implication for validity of the Tsunakawa–Shaw paleointensity method. Earth Planets Space. https://doi.org/10.1186/s40623-015-0229-8
Google Scholar
Yamazaki T, Yamamoto Y (2014) Paleointensity of the geomagnetic field in the Late Cretaceous and earliest Paleogene obtained from drill cores of the Louisville seamount trail. Geochem Geophys Geosyst 15:2454–2466. https://doi.org/10.1002/2014GC005298
Article
Google Scholar
Yu Y (2012) High-fidelity paleointensity determination from historic volcanoes in Japan. J Geophys Res. https://doi.org/10.1029/2012JB009368
Google Scholar