Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res Solid Earth 121:6109–6131
Article
Google Scholar
Archinal BA, A’Hearn MF, Bowell E, Conrad A, Consolmagno GJ, Courtin R, Fukushima T, Hestroffer D, Hilton JL, Krasinsky GA, Neumann G, Oberst J, Seidelmann PK, Stooke P, Tholen DJ, Thomas PC, Williams IP (2011) Report of the IAU working group on cartographic coordinates and rotational elements: 2009. Celest Mech Dyn Astron 109(2):101–135
Article
Google Scholar
Bizouard C, Gambis D (2018) International Earth Rotation and Reference Systems Service Earth Orientation Parameters EOP (IERS) 14 C04. ftp://hpiers.obspm.fr/iers/eop/eopc04/. Accessed 25 5 2018
Bolotin S, Baver K, Gipson J, Gordon D, MacMillan D (2014) The VLBI data analysis software νSolve: development progress and plans for the future. In: Baver KD, Behrend D, Armstrong KL (eds) IVS 2014 general meeting proceedings. Science Press, Beijing, pp 253–257
Google Scholar
Cao J, Zhang Y, Hu S, Huang Y, Chen M (2016) An analysis of precise positioning and accuracy of the CE-3 lunar lander soft landing. Geomat Inf Sci Wuhan Univ 41(2):274 (In Chinese)
Google Scholar
Deller AT, Brisken WF, Phillips CJ, Morgan J, Alef W, Cappallo R, Middelberg E, Romney J, Rottmann H, Tingay SJ, Wayth R (2011) DiFX-2: a more flexible, efficient, robust, and powerful software correlator. Publ Astron Soc Pac 123(901):275
Article
Google Scholar
Duev DA, Calves MG, Pogrebenko SV, Gurvits LI, Cimo G, Bahamon TB (2012) Spacecraft VLBI and doppler tracking: algorithms and implementation. Astron Astrophys 541:A43
Article
Google Scholar
Elphic RC, Delory GT, Hine BP, Mahaffy PR, Horanyi M, Colaprete A, Benna M, Noble SK (2014) The Lunar atmosphere and dust environment explorer mission. Space Sci Rev 185(1):3–25
Article
Google Scholar
Fey AL, Gordon D, Jacobs CS (eds) (2009) The second realization of the international celestial reference frame by very long baseline interferometry, Presented on behalf of the IERS/IVS Working Group. IERS Technical Note 35, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main
Folkner WM, Williams JG, Boggs DH (2009) The planetary and lunar ephemeris DE 421. IPN progress report 42–178
Haas R, Halsig S, Han S, Iddink A, Jaron F, La Porta L, Lovell J, Neidhardt A, Nothnagel A, Plötz C, Tang G, Zhang Z (2017) Observing the Chang’E-3 Lander with VLBI (OCEL): Technical setups and first results. In: Nothnagel A, Jaron F (eds) Proceedings of the first international workshop on VLBI observations of near-field targets, October 5–6, 2016, Schriftenreihe des Inst. f. Geodäsie u. Geoinformation, Vol 54, ISSN 1864-1113, Bonn, vol 54, pp 41–64
Hellerschmied A, McCallum L, McCallum J, Sun J, Böhm J, Cao J (2018) Observing APOD with the AuScope VLBI array. Sensors 18(5):1587
Article
Google Scholar
Hobiger T, Otsubo T (2017) Combination of space geodetic techniques on the observation level with c5++: common nuisance parameters and data weighting. In: van Dam T (ed) REFAG 2014. Springer, Cham, pp 31–37
Google Scholar
Hobiger T, Kondo T, Schuh H (2006) Very long baseline interferometry as a tool to probe the ionosphere. Radio Sci 41(1):1–10
Article
Google Scholar
Hobiger T, Otsubo T, Sekido M, Gotoh T, Kubooka T, Takiguchi H (2010) Fully automated VLBI analysis with c5++ for ultra rapid determination of UT1. Earth Planets Space 62(12):933–937
Article
Google Scholar
Hofmann F, Biskupek L, Müller J (2018) Contributions to reference systems from Lunar Laser Ranging using the IfE analysis model. J Geod 92(9):975–987
Article
Google Scholar
Jones DL, Folkner WM, Jacobson RA, Jacobs CS, Dhawan V, Romney J, Fomalont E (2015) Astrometry of Cassini With the VLBA to improve the Saturn Ephemeris. Astron J 149:28
Article
Google Scholar
Kato M, Sasaki S, Tanaka K, Iijima Y, Takizawa Y (2008) The Japanese lunar mission SELENE: science goals and present status. Adv Space Res 42(2):294–300
Article
Google Scholar
Klopotek G, Hobiger T, Haas R (2017a) Implementation of VLBI Near-Field Delay Models in the c5++ Analysis Software. In: Nothnagel A, Jaron F (eds) Proceedings of the first international workshop on VLBI observations of near-field targets, October 5–6, 2016, Schriftenreihe des Inst. f. Geodäsie u. Geoinformation, Vol 54, ISSN 1864-1113, Bonn, vol 54, pp 29–33
Klopotek G, Hobiger T, Haas R (2017b) Lunar Observations and Geodetic VLBI—A simulation study. In: Haas R, Elgered G (eds) Proceedings of the 23rd European VLBI group for Geodesy and Astrometry working meeting, Chalmers University of Technology, Gothenburg, pp 122–126
Klopotek G, Hobiger T, Haas R (2018) Geodetic VLBI with an artificial radio source on the Moon: a simulation study. J Geod 92(5):457–469
Article
Google Scholar
Li C, Liu J, Ren X, Zuo W, Tan X, Wen W, Li H, Mu L, Su Y, Zhang H, Yan J, Ouyang Z (2015) The Chang’e 3 mission overview. Space Sci Rev 190(1):85–101
Article
Google Scholar
Li P, Huang Y, Chang S, Hu X, Liu Q, Zheng X, Wang G, Zheng W, Fan M (2014) Positioning for the Chang’E-3 lander and rover using earth-based observations. Chin Sci Bull 59(32):3162 (In Chinese)
Article
Google Scholar
Liu B, Di K, Wang B, Tang G, Xu B, Zhang L, Liu Z (2015a) Positioning and precision validation of Chang’E-3 lander based on multiple LRO NAC images. Chin Sci Bull 60(28–29):2750 (In Chinese)
Article
Google Scholar
Liu Z, Di K, Peng M, Wan W, Liu B, Li L, Yu T, Wang B, Zhou J, Chen H (2015b) High precision landing site mapping and rover localization for Chang’e-3 mission. Sci China Phys Mech Astron 58(1):1–11 (In Chinese)
Google Scholar
Lonsdale CJ (1996) Haystack Observatory Postprocessing System (HOPS). ftp://gemini.haystack.mit.edu/pub/hops/what_is_hops. Accessed 25 6 2018
Niell A, Barrett J, Burns A, Cappallo R, Corey B, Derome M, Eckert C, Elosegui P, McWhirter R, Poirier M, Rajagopalan G, Rogers AEE, Ruszczyk C, SooHoo J, Titus M, Whitney A, Behrend D, Bolotin S, Gipson J, Gordon D, Himwich E, Petrachenko B (2018) Demonstration of a broadband very long baseline interferometer system: a new instrument for high-precision space Geodesy. Radio Sci 53(10):1269–1291
Article
Google Scholar
Nothnagel A, Artz T, Behrend D, Malkin Z (2017) International VLBI service for Geodesy and Astrometry—delivering high-quality products and embarking on observations of the next generation. J Geod 91(7):711–721
Article
Google Scholar
Petit G, Luzum B, (eds) (2010) IERS Conventions, (2010) IERS Technical Note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main
Schaer S, Beutler G, Rothacher M, Springer TA (1996) Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE. In: Neilan RE, Van Scoy PA, Zumberge JF (eds) Proceedings of the IGS Analysis Center Workshop, International GNSS Service
Sekido M, Kondo T, Kawai E, Imae M (2003) Evaluation of GPS-based ionospheric TEC map by comparing with VLBI data. Radio Sci 38(4)
Sovers OJ, Fanselow JL, Jacobs CS (1998) Astrometry and Geodesy with radio interferometry: experiments, models, results. Rev Mod Phys 70(4):1393–1454
Article
Google Scholar
Tooley CR, Houghton MB, Saylor RS, Peddie C, Everett DF, Baker CL, Safdie KN (2010) Lunar reconnaissance orbiter mission and spacecraft design. Space Sci Rev 150(1):23–62
Article
Google Scholar
Zhou H, Li H, Dong G (2015) Relative position determination between Chang’E-3 lander and rover using in-beam phase referencing. Sci China Inf Sci 58(9):1–10
Google Scholar