Aagaard BT, Knepley MG, Williams CA (2013) A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation. J Geophys Res 118(6):3059–3079
Article
Google Scholar
Agata R, Ichimura T, Hirahara K, Hyodo M, Hori T, Hashimoto C, Hori M (2015) Numerical verification criteria for coseismic and postseismic crustal deformation analysis with large-scale high-fidelity model. Proc Comput Sci 51:1534–1544. https://doi.org/10.1016/j.procs.2015.05.344
Article
Google Scholar
Ando M (1975) Source mechanisms and tectonic significance of historical earthquakes along the Nankai Trough Japan. Tectonophysics 27(2):119–140
Article
Google Scholar
Beavan J, Wallace LM, Palmer N, Denys P, Ellis S, Fournier N, Hreinsdottir S, Pearson C, Denham M (2016) New Zealand GPS velocity field: 1995–2013. NZ J Geol Geophys 59(1):5–14
Article
Google Scholar
Chadwell CD, Spiess FN (2008) Plate motion at the ridge-transform boundary of the south Cleft segment of the Juan de Fuca Ridge from GPS-Acoustic data. J Geophys Res 113(B4):04415. https://doi.org/10.1029/2007JB004936
Article
Google Scholar
Cheng H, Zhang B, Huang L, Zhang H, Shi Y (2019) Calculating coseismic deformation and stress changes in a heterogeneous ellipsoid earth model. Geophys J Int 216(2):851–858
Article
Google Scholar
Chlieh M, Avouac J-P, Hjorleifsdottir V, Song T-RA, Ji C, Sieh K, Sladen A, Hebert H, Prawirodirdjo L, Bock Y et al (2007) Coseismic slip and afterslip of the great M w 9.15 Sumatra-Andaman earthquake of 2004. Bull Seismol Soc Am 97(1A):152–173
Article
Google Scholar
Comninou M, Dundurs J (1975) The angular dislocation in a half space. J Elast 5(3–4):203–216
Article
Google Scholar
De Boor C (1972) On calculating with B-splines. J Approx Theor 6(1):50–62
Article
Google Scholar
Fujita K, Katsushima K, Ichimura T, Hori M, Maddegedara L (2016) Octree-based multiple-material parallel unstructured mesh generation method for seismic response analysis of soil-structure systems. Proc Comput Sci 80:1624–1634
Article
Google Scholar
Fujita K, Ichimura T, Koyama K, Inoue H, Hori M, Maddegedara L (2017) Fast and scalable low-order implicit unstructured finite-element solver for earth’s crust deformation problem. In: Proceedings of the Platform for Advanced Scientific Computing Conference, p. 11. ACM
Gharti HN, Langer L, Tromp J (2018) Spectral-infinite-element simulations of coseismic and post-earthquake deformation. Geophys J Int 216(2):1364–1393
Article
Google Scholar
Hashimoto C, Noda A, Sagiya T, Matsu’ura M (2009) Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion. Nat Geosci 2(2):141–144. https://doi.org/10.1038/ngeo421
Article
Google Scholar
Heki K, Miyazaki S (2001) Plate convergence and long-term crustal deformation in central Japan. Geophys Res Lett 28(12):2313–2316
Article
Google Scholar
Ichimura T, Hori M, Bielak J (2009) A hybrid multiresolution meshing technique for finite element three-dimensional earthquake ground motion modelling in basins including topography. Geophys J Int 177(3):1221–1232
Article
Google Scholar
Ichimura T, Agata R, Hori T, Hirahara K, Hori M (2013) Fast numerical simulation of crustal deformation using a three-dimensional high-fidelity model. Geophys J Int 195(3):1730–1744. https://doi.org/10.1093/gji/ggt320
Article
Google Scholar
Ichimura T, Agata R, Hori T, Hirahara K, Hashimoto C, Hori M, Fukahata Y (2016) An elastic/viscoelastic finite element analysis method for crustal deformation using a 3-D island-scale high-fidelity model. Geophys J Int 206(1):114–129
Article
Google Scholar
Ichimura T, Fujita K, Yamaguchi T, Naruse A, Wells JC, Zimmer CJ, Straatsma TP, Hori T, Puel S, Becker TW, et al. (2019) 416-pflops fast scalable implicit solver on low-ordered unstructured finite elements accelerated by 1.10-exaflops kernel with reformulated ai-like algorithm: For equation-based earthquake modeling. SC19: International Conference for High Performance Computing, Networking, Storage and Analysis
Ide S, Shiomi K, Mochizuki K, Tonegawa T, Kimura G (2010) Split Philippine Sea plate beneath Japan. Geophys Res Lett 37(21):1–6. https://doi.org/10.1029/2010GL044585
Article
Google Scholar
Iinuma T, Hino R, Kido M, Inazu D, Osada Y, Ito Y, Ohzono M, Tsushima H, Suzuki S, Fujimoto H, Miura S (2012) Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M9.0) refined by means of seafloor geodetic data. J Geophys Res 117(B7):1–18. https://doi.org/10.1029/2012JB009186
Article
Google Scholar
International Terrestrial Reference Frame: ITRF Web Site. http://itrf.ensg.ign.fr/
Ito Y, Tsuji T, Osada Y, Kido M, Inazu D, Hayashi Y, Tsushima H, Hino R, Fujimoto H (2011) Frontal wedge deformation near the source region of the 2011 Tohoku-oki earthquake. Geophys Res Lett. https://doi.org/10.1029/2011GL048355
Article
Google Scholar
Jin H, Kato T, Hori M (2007) Estimation of slip distribution using an inverse method based on spectral decomposition of Green’s function utilizing Global Positioning System (GPS) data. J Geophys Res. https://doi.org/10.1029/2004JB003378
Article
Google Scholar
Johnson KM, Tebo D (2018) Capturing 50 years of postseismic mantle flow at Nankai Subduction zone. J Geophys Res 123(11):10–091
Article
Google Scholar
Kaneda Y, Kawaguchi K, Araki E, Matsumoto H, Nakamura T, Kamiya S, Ariyoshi K, Hori T, Baba T, Takahashi N (2015) Development and application of an advanced ocean floor network system for megathrust earthquakes and tsunamis. In: Seafloor Observatories, pp. 643–662. Springer
Kobayashi T (2017) Earthquake rupture properties of the 2016 Kumamoto earthquake foreshocks (M j 6.5 and M j 6.4) revealed by conventional and multiple-aperture InSAR. Earth Planets Space 69(1):7. https://doi.org/10.1016/j.procs.2015.05.3440
Article
Google Scholar
Koketsu K, Miyake H, Tanaka Y (2009) A proposal for a standard procedure of modeling 3-D velocity structures and its application to the Tokyo metropolitan area. Japan. Tectonophysics 472(1–4):290–300. https://doi.org/10.1016/j.tecto.2008.05.037
Article
Google Scholar
Koketsu K, Miyake H, Suzuki H (2012) Japan integrated velocity structure model version 1. Proceedings of the 15th World Conference on Earthquake Engineering (1773). Lisbon
Komatitsch D, Tromp J (2002) Spectral-element simulations of global seismic wave propagation-I. Validation. Geophys J Int 149(2):390–412
Article
Google Scholar
Kyriakopoulos C, Masterlark T, Stramondo S, Chini M, Bignami C (2013) Coseismic slip distribution for the Mw 9 2011 Tohoku-Oki earthquake derived from 3-D FE modeling. J Geophys Res 118(February):3837–3847. https://doi.org/10.1002/jgrb.50265
Article
Google Scholar
Langer L, Gharti HN, Tromp J (2019) Impact of topography and three-dimensional heterogeneity on coseismic deformation. Geophys J Int 217(2):866–878
Article
Google Scholar
Laske G, Masters G, Ma Z, Pasyanos M (2013) Update on CRUST1.0 – A 1–degree global model of Earth’s crust. EGU General Assembly Vienna, Austria 15, 2658
The Headquarters for Earthquake Research Promotion (2017) The Long-term evaluation of seismic activity in the Kuril subduction zone (in
Japanese). https://www.jishin.go.jp/main/chousa/kaikou_pdf/chishima3.pdf. Accessed Feb 2021
Loveless JP, Meade BJ (2010) Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan. Journal of Geophysical Research: Solid Earth 115(B2)
Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the landers earthquake mapped by radar interferometry. Nature 364(6433):138
Article
Google Scholar
Masterlark T (2003) Finite element model predictions of static deformation from dislocation sources in a subduction zone: sensitivities to homogeneous, isotropic, Poisson-solid, and half-space assumptions. J Geophys Res 108(B11):2540. https://doi.org/10.1029/2002JB002296
Article
Google Scholar
Matsumura S, Murakami M, Imakiire T (2004) Concept of the new Japanese geodetic system. Bull Geograph Surv Inst 51:1–9
Google Scholar
McGuire JJ, Segall P (2003) Imaging of aseismic fault slip transients recorded by dense geodetic networks. Geophys J Int 155(3):778–788. https://doi.org/10.1111/j.1365-246X.2003.02022.x
Article
Google Scholar
Meade BJ (2007) Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space. Comput Geosci 33(8):1064–1075. https://doi.org/10.1016/j.cageo.2006.12.003
Article
Google Scholar
Melosh H, Raefsky A (1981) A simple and efficient method for introducing faults into finite element computations. Bull Seismol Soc Am 71(5):1391–1400
Article
Google Scholar
Miyazaki S, Hatanaka Y (1998) The outlines of the GEONET. Meteorol Res Note 192:105–131
Google Scholar
Miyazaki S, Segall P, Fukuda J, Kato T (2004) Space time distribution of afterslip following the 2003 Tokachi-oki earthquake: implications for variations in fault zone frictional properties. Geophys Res Lett. https://doi.org/10.1029/2003GL019410
Article
Google Scholar
Moritz H (2000) Geodetic reference system 1980. J Geodesy 74(1):128–133
Article
Google Scholar
Nakata R, Hino H, Kuwatani T, Yoshioka S, Okada M, Hori T (2017) Discontinuous boundaries of slow slip events beneath the Bungo Channel, southwest Japan. Sci Rep 7(1):6129
Article
Google Scholar
Nishimura T, Yokota Y, Tadokoro K, Ochi T (2018) Strain partitioning and interplate coupling along the northern margin of the Philippine sea plate, estimated from global navigation satellite system and global positioning system-acoustic data. Geosphere 14(2):535–551
Article
Google Scholar
Noda A, Saito T, Fukuyama E (2018) Slip-deficit rate distribution along the Nankai trough, southwest Japan, with elastic lithosphere and viscoelastic asthenosphere. J Geophys Res 123(9):8125–8142
Article
Google Scholar
Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75(4):1135–1154
Article
Google Scholar
Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 82(2):1018–1040
Article
Google Scholar
Ozawa S, Nishimura T, Suito H, Kobayashi T, Tobita M, Imakiire T (2011) Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature 475(7356):373–376. https://doi.org/10.1038/nature10227
Article
Google Scholar
Pan E (2019) Green’s functions for geophysics: a review. Rep Progr Phys 82(10):106801
Article
Google Scholar
Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res. https://doi.org/10.1029/2011JB008916
Article
Google Scholar
Qiu Q, Moore JD, Barbot S, Feng L, Hill EM (2018) Transient rheology of the Sumatran mantle wedge revealed by a decade of great earthquakes. Nat Commun 9(1):995
Article
Google Scholar
Sagiya T (2004) Interplate coupling in the Kanto district, central Japan, and the Boso peninsula silent earthquake in May 1996. Pure Appl Geophys 11(161):2327–2342
Google Scholar
Satake K (1987) Inversion of tsunami waveforms for the estimation of a fault heterogeneity: method and numerical experiments. J Phys Earth 35(3):241–254
Article
Google Scholar
Sato M, Ishikawa T, Ujihara N, Yoshida S, Fujita M, Mochizuki M, Asada A (2011) Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake. Science. 332(6036):1395. https://doi.org/10.1126/science.1207401
Article
Google Scholar
Sella GF, Dixon TH, Mao A (2002) Revel: a model for recent plate velocities from space geodesy. J Geophys Res 107(B4):11
Google Scholar
Slater JA, Malys S (1998) WGS 84–Past, Present and Future. In: Advances in Positioning and Reference Frames, pp. 1–7. Springer
Smith W, Wessel P (1990) Gridding with continuous curvature splines in tension. Geophysics 55(3):293–305
Article
Google Scholar
The National Geospatial-Intelligence Agency: NGA Products & Services. https://www.nga.mil/ProductsServices/GeodesyandGeophysics/Pages/WorldGeodeticSystem.aspx
Tobin H, Kinoshita M, Ashi J, Lallement S, Kimura G, Screaton E, Moe KT, Masago H, Curewitz D, Kitamura Y et al. (2009) NanTroSEIZE Stage 1 expeditions: introduction and synthesis of key results. IODP
Tomita F, Kido M, Osada Y, Hino R, Ohta Y, Iinuma T (2015) First measurement of the displacement rate of the Pacific Plate near the Japan Trench after the 2011 Tohoku-Oki earthquake using GPS/acoustic technique. Geophys Res Lett 42(20):8391–8397
Article
Google Scholar
Watanabe S-i, Bock Y, Melgar D, Tadokoro K (2018) Tsunami scenarios based on interseismic models along the Nankai trough, Japan, from seafloor and onshore geodesy. J Geophys Res 123(3):2448–2461
Article
Google Scholar
Williams CA, Wallace LM (2015) Effects of material property variations on slip estimates for subduction interface slow-slip events. Geophys Res Lett 42(4):1113–1121
Article
Google Scholar
Williams CA, Wallace LM (2018) The impact of realistic elastic properties on inversions of shallow subduction interface slow slip events using seafloor geodetic data. Geophys Res Lett 45(15):7462–7470
Article
Google Scholar
Wright T, Parsons B, Jackson J, Haynes M, Fielding E, England P, Clarke P (1991) Source parameters of the 1 October 1995 dinar (turkey) earthquake from sar interferometry and seismic bodywave modelling. Earth Planet Sci Lett 172(1–2):23–37
Google Scholar
Yabuki T, Matsu’ura M (1992) Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip. Geophys J Int 109(2):363–375. https://doi.org/10.1111/j.1365-246X.1992.tb00102.x
Article
Google Scholar
Yokota Y, Ishikawa T, Watanabe S-i, Tashiro T, Asada A (2016) Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone. Nature 534(7607):374
Article
Google Scholar