Allen CC, Jager KM, Morris RV, Lindstrom DJ, Lindstrom MM, Lockwood JP (1998) JSC Mars-1: a Martian soil simulant. Space 98:469–476
Google Scholar
Andert TP, Rosenblatt P, Pätzold M, Häusler B, Dehant V, Tyler GL, Marty JC (2010) Precise mass determination and the nature of Phobos. Geophys Res Lett. https://doi.org/10.1029/2009gl041829
Article
Google Scholar
Ballouz RL, Baresi N, Crites ST, Kawakatsu Y, Fujimoto M (2019) Surface refreshing of Martian moon Phobos by orbital eccentricity-driven grain motion. Nat Geosci 12(4):229–234. https://doi.org/10.1038/s41561-019-0323-9
Article
Google Scholar
Basilevsky AT, Head JW, Horz F (2013) Survival times of meter-sized boulders on the surface of the Moon. Planet Space Sci 89:118–126. https://doi.org/10.1016/j.pss.2013.07.011
Article
Google Scholar
Basilevsky AT, Head JW, Horz F, Ramsley K (2015) Survival times of meter-sized rock boulders on the surface of airless bodies. Planet Space Sci 117:312–328. https://doi.org/10.1016/j.pss.2015.07.003
Article
Google Scholar
Bierhaus EB, Clark BC, Harris JW, Payne KS, Dubisher RD, Wurts DW, Hund RA, Kuhns RM, Linn TM, Wood JL, May AJ, Dworkin JP, Beshore E, Lauretta DS (2018) The OSIRIS-REx spacecraft and the touch-and-go sample acquisition mechanism (TAGSAM). Space Sci Rev. https://doi.org/10.1007/s11214-018-0521-6
Article
Google Scholar
Bland PA, Cressey G, Menzies ON (2004) Modal mineralogy of carbonaceous chondrites by X-ray diffraction and Mössbauer spectroscopy. Meteorit Planet Sci 39(1):3–16. https://doi.org/10.1111/j.1945-5100.2004.tb00046.x
Article
Google Scholar
Borin P, Cremonese G, Marzari F, Lucchetti A (2017) Asteroidal and cometary dust flux in the inner solar system. Astron Astrophys. https://doi.org/10.1051/0004-6361/201730617
Article
Google Scholar
Britt DT, Cannon KM, Donaldson Hanna K, Hogancamp J, Poch O, Beck P, Martin D, Escrig J, Bonal L, Metzger PT (2019) Simulated asteroid materials based on carbonaceous chondrite mineralogies. Meteorit Planet Sci 54(9):2067–2082. https://doi.org/10.1111/maps.13345
Article
Google Scholar
Brown PG, Hildebrand AR, Zolensky ME, Grady M, Clayton RN, Mayeda TK, Tagliaferri E, Spalding R, MacRae ND, Hoffman EL, Mittlefehldt DW, Wacker JF, Bird JA, Campbell MD, Carpenter R, Gingerich H, Glatiotis M, Greiner E, Mazur MJ, McCausland PJ, Plotkin H, Rubak Mazur T (2000) The fall, recovery, orbit, and composition of the Tagish Lake meteorite: a new type of carbonaceous chondrite. Science 290(5490):320–325. https://doi.org/10.1126/science.290.5490.320
Article
Google Scholar
Busch MW, Ostro SJ, Benner LAM, Giorgim JD, Magri C, Howell ES, Nolan MC, Hine AA, Campbell DB, Shapiro II, Chandler JF (2007) Arecibo radar observations of Phobos and Deimos. Icarus 186(2):581–584. https://doi.org/10.1016/j.icarus.2006.11.003
Article
Google Scholar
Chapman CR (1996) S-type asteroids, ordinary chondrites, and space weathering: the evidence from Galileo’s fly-bys of Gaspra and Ida. Meteorit Planet Sci 31(6):699–725. https://doi.org/10.1111/j.1945-5100.1996.tb02107.x
Article
Google Scholar
Colwell J, Gulbis A, Horanyi M, Robertson S (2005) Dust transport in photoelectron layers and the formation of dust ponds on Eros. Icarus 175(1):159–169. https://doi.org/10.1016/j.icarus.2004.11.001
Article
Google Scholar
Consolmagno GJ, Britt DT, Macke RJ (2008) The significance of meteorite density and porosity. Chem Erde-Geochem 68(1):1–29. https://doi.org/10.1016/j.chemer.2008.01.003
Article
Google Scholar
Delbo M, Libourel G, Wilkerson J, Murdoch N, Michel P, Ramesh KT, Ganino C, Verati C, Marchi S (2014) Thermal fatigue as the origin of regolith on small asteroids. Nature 508(7495):233–236. https://doi.org/10.1038/nature13153
Article
Google Scholar
Divine N (1993) 5 Populations of interplanetary meteoroids. J Geophys Res-Planet 98(E9):17029–17048. https://doi.org/10.1029/93je01203
Article
Google Scholar
Dombard AJ, Barnouin OS, Prockter LM, Thomas PC (2010) Boulders and ponds on the Asteroid 433 Eros. Icarus 210(2):713–721. https://doi.org/10.1016/j.icarus.2010.07.006
Article
Google Scholar
Dubinin EM, Lundin R, Pissarenko NF, Barabash SV, Zakharov AV, Koskinen H, Schwingenshuh K, Yeroshenko YG (1990) Indirect evidences for a gas dust torus along the phobos Orbit. Geophys Res Lett 17(6):861–864. https://doi.org/10.1029/GL017i006p00861
Article
Google Scholar
Flynn GJ (1997) The contribution by interplanetary dust to noble gases in the atmosphere of Mars. J Geophys Res-Planet 102(E4):9175–9182. https://doi.org/10.1029/96je03883
Article
Google Scholar
Fraeman AA, Arvidson RE, Murchie SL, Rivkin A, Bibring JP, Choo TH, Gondet B, Humm D, Kuzmin RO, Manaud N, Zabalueva EV (2012) Analysis of disk-resolved OMEGA and CRISM spectral observations of Phobos and Deimos. J Geophys Res-Planet. https://doi.org/10.1029/2012je004137
Article
Google Scholar
Fraeman AA, Murchie SL, Arvidson RE, Clark RN, Morris RV, Rivkin AS, Vilas F (2014) Spectral absorptions on Phobos and Deimos in the visible/near infrared wavelengths and their compositional constraints. Icarus 229:196–205. https://doi.org/10.1016/j.icarus.2013.11.021
Article
Google Scholar
Glotch TD, Edwards CS, Yesiltas M, Shirley KA, McDougall DS, Kling AM, Bandfield JL, Herd CDK (2018) MGS-TES spectra suggest a basaltic component in the regolith of Phobos. J Geophys Res-Planet 123(10):2467–2484. https://doi.org/10.1029/2018je005647
Article
Google Scholar
Grün E, Zook HA, Fechtig H, Giese RH (1985) Collisional balance of the meteoritic complex. Icarus 62(2):244–272. https://doi.org/10.1016/0019-1035(85)90121-6
Article
Google Scholar
Hargitai H, Kereszturi A (2015) Encyclopedia of planetary landforms, Springer-Verlag, ISBN 978-1-4614-3133-6, 2497pp
Hartzell CM, Scheeres DJ (2011) The role of cohesive forces in particle launching on the Moon and asteroids. Planet Space Sci 59(14):1758–1768. https://doi.org/10.1016/j.pss.2011.04.017
Article
Google Scholar
Hemmi R, Miyamoto H (2020) Morphology and morphometry of sub-kilometer craters on the nearside of Phobos and implications for regolith properties. Trans Japan Soc Aero Space Sci 63(4):124–131. https://doi.org/10.2322/tjsass.63.124
Article
Google Scholar
Hildebrand AR, McCausland PJA, Brown PG, Longstaffe FJ, Russell SDJ, Tagliaferri E, Wacker JF, Mazur MJ (2006) The fall and recovery of the Tagish Lake meteorite. Meteorit Planet Sci 41(3):407–431. https://doi.org/10.1111/j.1945-5100.2006.tb00471.x
Article
Google Scholar
Hiroi T, Zolensky ME, Pieters CM (2001) The Tagish Lake meteorite: a possible sample from a D-type asteroid. Science 293(5538):2234–2236. https://doi.org/10.1126/science.1063734
Article
Google Scholar
Housen KR, Holsapple KA (2011) Ejecta from impact craters. Icarus 211(1):856–875. https://doi.org/10.1016/j.icarus.2010.09.017
Article
Google Scholar
Hu X, Shi X, Sierks H, Fulle M, Blum J, Keller HU, Kührt E, Davidsson B, Güttler C, Gundlach B, Pajola M, Bodewits D, Vincent JB, Oklay N, Massironi M, Fornasier S, Tubiana C, Groussin O, Boudreault S, Höfner S, Mottola S, Barbieri C, Lamy PL, Rodrigo R, Koschny D, Rickman H, A’Hearn M, Agarwal J, Barucci MA, Bertaux JL, Bertini I, Cremonese G, Da Deppo V, Debei S, De Cecco M, Deller J, El-Maarry MR, Gicquel A, Gutierrez-Marques P, Gutiérrez PJ, Hofmann M, Hviid SF, Ip WH, Jorda L, Knollenberg J, Kovacs G, Kramm JR, Küppers M, Lara LM, Lazzarin M, Lopez-Moreno JJ, Marzari F, Naletto G, Thomas N (2017) Seasonal erosion and restoration of the dust cover on comet 67P/Churyumov-Gerasimenko as observed by OSIRIS onboard Rosetta. Astron Astrophys. https://doi.org/10.1051/0004-6361/201629910
Article
Google Scholar
Hurford TA, Asphaug E, Spitale JN, Hemingway D, Rhoden AR, Henning WG, Bills BG, Kattenhorn SA, Walker M (2016) Tidal disruption of Phobos as the cause of surface fractures. J Geophys Res: Planets 121(6):1054–1065. https://doi.org/10.1002/2015je004943
Article
Google Scholar
Hyodo R, Genda H, Charnoz S, Rosenblatt P (2017) On the impact origin of Phobos and Deimos. I. Thermodynamic and physical aspects. Astrophys J. https://doi.org/10.3847/1538-4357/aa81c4
Article
Google Scholar
Hyodo R, Kurosawa K, Genda H, Usui T, Fujita K (2019) Transport of impact ejecta from Mars to its moons as a means to reveal Martian history. Sci Rep-Uk. https://doi.org/10.1038/s41598-019-56139-x
Article
Google Scholar
Ivanov BA (2001) Mars/Moon cratering rate ratio estimates. Space Sci Rev 96(1–4):87–104. https://doi.org/10.1023/A:1011941121102
Article
Google Scholar
Izawa MRM, Flemming RL, King PL, Peterson RC, McCausland PJA (2010) Mineralogical and spectroscopic investigation of the Tagish Lake carbonaceous chondrite by X-ray diffraction and infrared reflectance spectroscopy. Meteorit Planet Sci 45(4):675–698. https://doi.org/10.1111/j.1945-5100.2010.01043.x
Article
Google Scholar
Jacobson RA (2010) The orbits and masses of the Martian satellites and the Libration of Phobos. Astron J 139(2):668–679. https://doi.org/10.1088/0004-6256/139/2/668
Article
Google Scholar
Kring DA, Melosh HJ, Hunten DM (1996) Impact-induced perturbations of atmospheric sulfur. Earth Planet Sci Lett 140(1–4):201–212. https://doi.org/10.1016/0012-821x(96)00050-7
Article
Google Scholar
Kührt E, Giese B (1989) A thermal-model of the Martian satellites. Icarus 81(1):102–112. https://doi.org/10.1016/0019-1035(89)90128-0
Article
Google Scholar
Kührt E, Giese B, Keller HU, Ksanfomality LV (1992) Interpretation of the Krfm-infrared measurements of Phobos. Icarus 96(2):213–218. https://doi.org/10.1016/0019-1035(92)90075-I
Article
Google Scholar
Kuramoto K et al (2021) Martian moons exploration MMX: sample return mission to Phobos elucidating formation processes of habitable planet. Earth Planets Space. https://doi.org/10.1186/s40623-021-01545-7
Article
Google Scholar
Kuzmin RO, Shingareva TV, Zabalueva EV (2003) An engineering model for the Phobos surface. Solar Syst Res 37(4):266–281. https://doi.org/10.1023/A:1025074114117
Article
Google Scholar
Lauretta DS, DellaGiustina DN, Bennett CA, Golish DR, Becker KJ, Balram-Knutson SS, Barnouin OS, Becker TL, Bottke WF, Boynton WV, Campins H, Clark BE, Connolly HC, d'Aubigny CYD, Dworkin JP, Emery JP, Enos HL, Hamilton VE, Hergenrother CW, Howell ES, Izawa MRM, Kaplan HH, Nolan MC, Rizk B, Roper HL, Scheeres DJ, Smith PH, Walsh KJ, Wolner CWV, Highsmith DE, Small J, Vokrouhlicky D, Bowles NE, Brown E, Hanna KLD, Warren T, Brunet C, Chicoine RA, Desjardins S, Gaudreau D, Haltigin T, Millington-Veloza S, Rubi A, Aponte J, Gorius N, Lunsford A, Allen B, Grindlay J, Guevel D, Hoak D, Hong J, Schrader DL, Bayron J, Golubov O, Sanchez P, Stromberg J, Hirabayashi M, Hartzell CM, Oliver S, Rascon M, Harch A, Joseph J, Squyres S, Richardson D, McGraw L, Ghent R, Binzel RP, Al Asad MM, Johnson CL, Philpott L, Susorney HCM, Cloutis EA, Hanna RD, Ciceri F, Hildebrand AR, Ibrahim EM, Breitenfeld L, Glotch T, Rogers AD, Ferrone S, Thomas CA, Fernandez Y, Chang W, Cheuvront A, Trang D, Tachibana S, Yurimoto H, Brucato JR, Poggiali G, Pajola M, Dotto E, Epifani EM, Crombie MK, Lantz C, de Leon J, Licandro J, Garcia JLR, Clemett S, Thomas-Keprta K, Van Wal S, Yoshikawa M, Bellerose J, Bhaskaran S, Boyles C, Chesley SR, Elder CM, Farnocchia D, Harbison A, Kennedy B, Knight A, Martinez-Vlasoff N, Mastrodemos N, McElrath T, Owen W, Park R, Rush B, Swanson L, Takahashi Y, Velez D, Yetter K, Thayer C, Adam C, Antreasian P, Bauman J, Bryan C, Carcich B, Corvin M, Geeraert J, Hoffman J, Leonard JM, Lessac-Chenen E, Levine A, McAdams J, McCarthy L, Nelson D, Page B, Pelgrift J, Sahr E, Stakkestad K, Stanbridge D, Wibben D, Williams B, Williams K, Wolff P, Hayne P, Kubitschek D, Barucci MA, Deshapriya JDP, Fornasier S, Fulchignoni M, Hasselmann P, Merlin F, Praet A, Bierhaus EB, Billett O, Boggs A, Buck B, Carlson-Kelly S, Cerna J, Chaffin K, Church E, Coltrin M, Daly J, Deguzman A, Dubisher R, Eckart D, Ellis D, Falkenstern P, Fisher A, Fisher ME, Fleming P, Fortney K, Francis S, Freund S, Gonzales S, Haas P, Hasten A, Hauf D, Hilbert A, Howell D, Jaen F, Jayakody N, Jenkins M, Johnson K, Lefevre M, Ma H, Mario C, Martin K, May C, Mcgee M, Miller B, Miller C, Miller G, Mirfakhrai A, Muhle E, Norman C, Olds R, Parish C, Ryle M, Schmitzer M, Sherman P, Skeen M, Susak M, Sutter B, Tran Q, Welch C, Witherspoon R, Wood J, Zareski J, Arvizu-Jakubicki M, Asphaug E, Audi E, Ballouz RL, Bandrowski R, Bendall S, Bloomenthal H, Blum D, Brodbeck J, Burke KN, Chojnacki M, Colpo A, Contreras J, Cutts J, Dean D, Diallo B, Drinnon D, Drozd K, Enos R, Fellows C, Ferro T, Fisher MR, Fitzgibbon G, Fitzgibbon M, Forelli J, Forrester T, Galinsky I, Garcia R, Gardner A, Habib N, Hamara D, Hammond D, Hanley K, Harshman K, Herzog K, Hill D, Hoekenga C, Hooven S, Huettner E, Janakus A, Jones J, Kareta TR, Kidd J, Kingsbury K, Koelbel L, Kreiner J, Lambert D, Lewin C, Lovelace B, Loveridge M, Lujan M, Maleszewski CK, Malhotra R, Marchese K, McDonough E, Mogk N, Morrison V, Morton E, Munoz R, Nelson J, Padilla J, Pennington R, Polit A, Ramos N, Reddy V, Riehl M, Salazar S, Schwartz SR, Selznick S, Shultz N, Stewart S, Sutton S, Swindle T, Tang YH, Westermann M, Worden D, Zega T, Zeszut Z, Bjurstrom A, Bloomquist L, Dickinson C, Keates E, Liang J, Nifo V, Taylor A, Teti F, Caplinger M, Bowles H, Carter S, Dickenshied S, Doerres D, Fisher T, Hagee W, Hill J, Miner M, Noss D, Piacentine N, Smith M, Toland A, Wren P, Bernacki M, Munoz DP, Watanabe SI, Sandford SA, Aqueche A, Ashman B, Barker M, Bartels A, Berry K, Bos B, Burns R, Calloway A, Carpenter R, Castro N, Cosentino R, Donaldson J, Cook JE, Emr C, Everett D, Fennell D, Fleshman K, Folta D, Gallagher D, Garvin J, Getzandanner K, Glavin D, Hull S, Hyde K, Ido H, Ingegneri A, Jones N, Kaotira P, Lim LF, Liounis A, Lorentson C, Lorenz D, Lyzhoft J, Mazarico EM, Mink R, Moore W, Moreau M, Mullen S, Nagy J, Neumann G, Nuth J, Poland D, Reuter DC, Rhoads L, Rieger S, Rowlands D, Sallitt D, Scroggins A, Shaw G, Simon AA, Swenson J, Vasudeva P, Wasser M, Zellar R, Grossman J, Johnston G, Morris M, Wendel J, Burton A, Keller LP, McNamara L, Messenger S, Nakamura-Messenger K, Nguyen A, Righter K, Queen E, Bellamy K, Dill K, Gardner S, Giuntini M, Key B, Kissell J, Patterson D, Vaughan D, Wright B, Gaskell RW, Le Corre L, Li JY, Molaro JL, Palmer EE, Siegler MA, Tricarico P, Weirich JR, Zou XD, Ireland T, Tait K, Bland P, Anwar S, Bojorquez-Murphy N, Christensen PR, Haberle CW, Mehall G, Rios K, Franchi I, Rozitis B, Beddingfield CB, Marshall J, Brack DN, French AS, McMahon JW, Jawin ER, Mccoy TJ, Russell S, Killgore M, Bandfield JL, Clark BC, Chodas M, Lambert M, Masterson RA, Daly MG, Freemantle J, Seabrook JA, Craft K, Daly RT, Ernst C, Espiritu RC, Holdridge M, Jones M, Nair AH, Nguyen L, Peachey J, Perry ME, Plescia J, Roberts JH, Steele R, Turner R, Backer J, Edmundson K, Mapel J, Milazzo M, Sides S, Manzoni C, May B, Delbo M, Libourel G, Michel P, Ryan A, Thuillet F, Marty B, Team O-R (2019) The unexpected surface of asteroid (101955) Bennu. Nature 568 (7750):55–60. https://doi.org/10.1038/s41586-019-1033-6
Le Maistre S, Rivoldini A, Rosenblatt P (2019) Signature of Phobos’ interior structure in its gravity field and libration. Icarus 321:272–290. https://doi.org/10.1016/j.icarus.2018.11.022
Article
Google Scholar
Lee P (1996) Dust levitation on asteroids. Icarus 124(1):181–194. https://doi.org/10.1006/icar.1996.0197
Article
Google Scholar
Lunine JI, Neugebauer G, Jakosky BM (1982) Infrared observations of Phobos and Deimos from Viking. J Geophys Res 87(Nb12):297–305. https://doi.org/10.1029/JB087iB12p10297
Article
Google Scholar
Metzger PT, Britt DT, Covey S, Schultz C, Cannon KM, Grossman KD, Mantovani JG, Mueller RP (2019) Measuring the fidelity of asteroid regolith and cobble simulants. Icarus 321:632–646. https://doi.org/10.1016/j.icarus.2018.12.019
Article
Google Scholar
Michel P et al (2021) The MMX rover: performing in-situ surface investigations on Phobos. Earth Planets Space. https://doi.org/10.1186/s40623-021-01464-7
Article
Google Scholar
Miyamoto H, Niihara T (2020) Simplified simulated materials of asteroid ryugu for spacecraft operations and scientific evaluations. Nat Resour Res. https://doi.org/10.1007/s11053-020-09626-2
Article
Google Scholar
Miyamoto H, Yano H, Scheeres DJ, Abe S, Barnouin-Jha O, Cheng AF, Demura H, Gaskell RW, Hirata N, Ishiguro M, Michikami T, Nakamura AM, Nakamura R, Saito J, Sasaki S (2007) Regolith migration and sorting on asteroid Itokawa. Science 316(5827):1011–1014. https://doi.org/10.1126/science.1134390
Article
Google Scholar
Miyamoto H, Hong PK, Niihara T, Kuritani T, Fukumizu K, Hino H, Nagata K, Akaho S, Rodriguez JAP, Ryodo H, Sugita S, Okada M (2018) Reflectance spectra of Asteroids and Meteorites: their classifications and statistical comparisons. J Phys: Conf Series. https://doi.org/10.1088/1742-6596/1036/1/012003
Article
Google Scholar
Murchie S, Thomas N, Britt D, Herkenhoff K, Bell JF (1999) Mars pathfinder spectral measurements of Phobos and Deimos: comparison with previous data. J Geophys Res-Planet 104(E4):9069–9079. https://doi.org/10.1029/98je02248
Article
Google Scholar
Murchie SL, Britt DT, Pieters CM (2014) The value of Phobos sample return. Planet Space Sci 102:176–182. https://doi.org/10.1016/j.pss.2014.04.014
Article
Google Scholar
Nakamura T, Noguchi T, Zolensky ME, Tanaka M (2003) Mineralogy and noble-gas signatures of the carbonate-rich lithology of the Tagish Lake carbonaceous chondrite: evidence for an accretionary breccia. Earth Planet Sci Lett 207:83–101. https://doi.org/10.1016/S0012-821X(02)01127-5
Article
Google Scholar
Niihara T, Beard SP, Swindle TD, Schaffer LA, Miyamoto H, Kring DA (2019) Evidence for multiple 4.0–3.7 Ga impact events within the Apollo 16 collection. Meteorit Planet Sci 54(4):675–698. https://doi.org/10.1111/maps.13237
Article
Google Scholar
Oieroset M, Brain DA, Simpson E, Mitchell DL, Phan TD, Halekas JS, Lin RP, Acuna MH (2010) Search for Phobos and Deimos gas/dust tori using in situ observations from Mars Global Surveyor MAG/ER. Icarus 206(1):189–198. https://doi.org/10.1016/j.icarus.2009.07.017
Article
Google Scholar
Pajola M, Lazzarin M, Dalle Ore CM, Cruikshank DP, Roush TL, Magrin S, Bertini I, La Forgia F, Barbieri C (2013) Phobos as a D-type captured asteroid, spectral modeling from 0.25 to 4.0 μm. Astrophys J. https://doi.org/10.1088/0004-637x/777/2/127
Article
Google Scholar
Pätzold M, Andert T, Jacobson R, Rosenblatt P, Dehant V (2014) Phobos: observed bulk properties. Planet Space Sci 102:86–94. https://doi.org/10.1016/j.pss.2014.01.004
Article
Google Scholar
Pieters CM, Hiroi T (2004) RELAB (Reflectance Experiment Laboratory): a NASA Multiuser Spectroscopy Facility. Paper presented at the 35th Lunar and Planetary Science Conference, Houston
Pieters CM, Klima RL, Hiroi T, Dyar MD, Lane MD, Treiman AH, Noble SK, Sunshine JM, Bishop JL (2008) Martian dunite NWA 2737: integrated spectroscopic analyses of brown olivine. J Geophys Res-Planet. https://doi.org/10.1029/2007je002939
Article
Google Scholar
Pieters CM, Murchie S, Thomas N, Britt D (2014) Composition of surface materials on the moons of mars. Planet Space Sci 102:144–151. https://doi.org/10.1016/j.pss.2014.02.008
Article
Google Scholar
Popel SI, Golub’ AP, Zakharov AV, Zelenyi LM (2019) Dusty plasmas at Martian satellites. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1147/1/012110
Article
Google Scholar
Ramsley KR, Head JW (2013a) Mars impact ejecta in the regolith of Phobos: bulk concentration and distribution. Planet Space Sci 87:115–129. https://doi.org/10.1016/j.pss.2013.09.005
Article
Google Scholar
Ramsley KR, Head JW (2013b) The origin of Phobos grooves from ejecta launched from impact craters on Mars: tests of the hypothesis. Planet Space Sci 75:69–95. https://doi.org/10.1016/j.pss.2012.10.007
Article
Google Scholar
Richardson JE, Steckloff JK, Minton DA (2020) Impact-produced seismic shaking and regolith growth on asteroids 433 Eros, 2867 Šteins, and 25143 Itokawa. Icarus. https://doi.org/10.1016/j.icarus.2020.113811
Article
Google Scholar
Rivkin AS, Brown RH, Trilling DE, Bell JF, Plassmann JH (2002) Near-infrared spectrophotometry of Phobos and Deimos. Icarus 156(1):64–75. https://doi.org/10.1006/icar.2001.6767
Article
Google Scholar
Robinson MS, Thomas PC, Veverka J, Murchie S, Carcich B (2001) The nature of ponded deposits on Eros. Nature 413(6854):396–400. https://doi.org/10.1038/35096518
Article
Google Scholar
Russell CT, Raymond CA, Coradini A, McSween HY, Zuber MT, Nathues A, De Sanctis MC, Jaumann R, Konopliv AS, Preusker F, Asmar SW, Park RS, Gaskell R, Keller HU, Mottola S, Roatsch T, Scully JEC, Smith DE, Tricarico P, Toplis MJ, Christensen UR, Feldman WC, Lawrence DJ, McCoy TJ, Prettyman TH, Reedy RC, Sykes ME, Titus TN (2012) Dawn at vesta: testing the protoplanetary paradigm. Science 336(6082):684–686. https://doi.org/10.1126/science.1219381
Article
Google Scholar
Saito J, Miyamoto H, Nakamura R, Ishiguro M, Michikami T, Nakamura AM, Demura H, Sasaki S, Hirata N, Honda C, Yamamoto A, Yokota Y, Fuse T, Yoshida F, Tholen DJ, Gaskell RW, Hashimoto T, Kubota T, Higuchi Y, Nakamura T, Smith P, Hiraoka K, Honda T, Kobayashi S, Furuya M, Matsumoto N, Nemoto E, Yukishita A, Kitazato K, Dermawan B, Sogame A, Terazono J, Shinohara C, Akiyama H (2006) Detailed images of asteroid 25143 Itokawa from Hayabusa. Science 312(5778):1341–1344. https://doi.org/10.1126/science.1125722
Article
Google Scholar
Sakatani N, Ogawa K, Iijima YI, Honda R, Tanaka S (2012) Experimental study for thermal conductivity structure of lunar surface regolith: effect of compressional stress. Icarus 221(2):1180–1182. https://doi.org/10.1016/j.icarus.2012.08.037
Article
Google Scholar
Sasaki S, Nakamura K, Hamabe Y, Kurahashi E, Hiroi T (2001) Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature 410(6828):555–557. https://doi.org/10.1038/35069013
Article
Google Scholar
Scheeres DJ, Van Wal S, Olikara Z, Baresi N (2019) Dynamics in the Phobos environment. Adv Space Res 63(1):476–495. https://doi.org/10.1016/j.asr.2018.10.016
Article
Google Scholar
Schmedemann N, Kneissl T, Ivanov BA, Michael GG, Wagner RJ, Neukum G, Ruesch O, Hiesinger H, Krohn K, Roatsch T, Preusker F, Sierks H, Jaumann R, Reddy V, Nathues A, Walter SHG, Neesemann A, Raymond CA, Russell CT (2014) The cratering record, chronology and surface ages of (4) Vesta in comparison to smaller asteroids and the ages of HED meteorites. Planet Space Sci 103:104–130. https://doi.org/10.1016/j.pss.2014.04.004
Article
Google Scholar
Senshu H, Kimura H, Yamamoto T, Wada K, Kobayashi M, Namiki N, Matsui T (2015) Photoelectric dust levitation around airless bodies revised using realistic photoelectron velocity distributions. Planet Space Sci 116:18–29. https://doi.org/10.1016/j.pss.2015.03.009
Article
Google Scholar
Shiomoto J, Nakamura A, Hasegawa N, Miyamoto H, Niihara T (2020) Laboratory collisional disruption experiments of D-type asteroids analogue targets. Paper presented at the JpGU-AGU Joint Meeting 2020
Showalter MR, Hamilton DP, Nicholson PD (2006) A deep search for Martian dust rings and inner moons using the Hubble Space Telescope. Planet Space Sci 54(9–10):844–854. https://doi.org/10.1016/j.pss.2006.05.009
Article
Google Scholar
Simonelli DP, Wisz M, Switala A, Adinolfi D, Veverka J, Thomas PC, Helfenstein P (1998) Photometric properties of Phobos surface materials from Viking images. Icarus 131(1):52–77. https://doi.org/10.1006/icar.1997.5800
Article
Google Scholar
Stoeser DB, Wilson SA, Fikes J, McLemore C, Rickman D (2008) Development of lunar highland regolith simulants, NU-LHT-1M, -2M. Geochimica Et Cosmochimica Acta Supplement 72:A902
Google Scholar
Sugita S, Honda R, Morota T, Kameda S, Sawada H, Tatsumi E, Yamada M, Honda C, Yokota Y, Kouyama T, Sakatani N, Ogawa K, Suzuki H, Okada T, Namiki N, Tanaka S, Iijima Y, Yoshioka K, Hayakawa M, Cho Y, Matsuoka M, Hirata N, Hirata N, Miyamoto H, Domingue D, Hirabayashi M, Nakamura T, Hiroi T, Michikami T, Michel P, Ballouz RL, Barnouin OS, Ernst CM, Schroder SE, Kikuchi H, Hemmi R, Komatsu G, Fukuhara T, Taguchi M, Arai T, Senshu H, Demura H, Ogawa Y, Shimaki Y, Sekiguchi T, Muller TG, Hagermann A, Mizuno T, Noda H, Matsumoto K, Yamada R, Ishihara Y, Ikeda H, Araki H, Yamamoto K, Abe S, Yoshida F, Higuchi A, Sasaki S, Oshigami S, Tsuruta S, Asari K, Tazawa S, Shizugami M, Kimura J, Otsubo T, Yabuta H, Hasegawa S, Ishiguro M, Tachibana S, Palmer E, Gaskell R, Le Corre L, Jaumann R, Otto K, Schmitz N, Abell PA, Barucci MA, Zolensky ME, Vilas F, Thuillet F, Sugimoto C, Takaki N, Suzuki Y, Kamiyoshihara H, Okada M, Nagata K, Fujimoto M, Yoshikawa M, Yamamoto Y, Shirai K, Noguchi R, Ogawa N, Terui F, Kikuchi S, Yamaguchi T, Oki Y, Takao Y, Takeuchi H, Ono G, Mimasu Y, Yoshikawa K, Takahashi T, Takei Y, Fujii A, Hirose C, Nakazawa S, Hosoda S, Mori O, Shimada T, Soldini S, Iwata T, Abe M, Yano H, Tsukizaki R, Ozaki M, Nishiyama K, Saiki T, Watanabe S, Tsuda Y (2019) The geomorphology, color, and thermal properties of Ryugu: implications for parent-body processes. Science 364(6437):252. https://doi.org/10.1126/science.aaw0422
Article
Google Scholar
Tachibana S, Sawada H, Okazaki R, Takano Y, Okamoto C, Yano H, Team H-S (2013) The sampling system of hayabusa-2: improvements from the hayabusa sampler. Paper presented at the 44th Lunar and Planetary Science Conference, The Woodlands
Takemura T, Miyamoto H, Hemmi R, Niihara T, Michel P (2021) Small-scale topographic irregularities on Phobos: image and numerical analyses for MMX mission. Earth Planets Space. https://doi.org/10.1186/s40623-021-01463-8
Thomas PC (1993) Gravity, tides, and topography on small satellites and asteroids: application to surface features of the martian satellites. Icarus 105(2):326–344. https://doi.org/10.1006/icar.1993.1130
Article
Google Scholar
Tsuchiyama A, Mashio E, Imai Y, Noguchi T, Miura Y, Yano H, Nakamura T (2009) Strength Measurement of Carbonaceous Chondrites and Micrometeorites Using Micro Compression Testing Machine. Paper presented at the 72nd Annual Meeting of the Meteoritical Society, Nancy
Usui T, Bajo K, Fujiya W, Furukawa Y, Koike M, Miura YN, Sugahara H, Tachibana S, Takano Y, Kuramoto K (2020) The importance of Phobos sample return for understanding the mars-moon system. Space Sci Rev. https://doi.org/10.1007/s11214-020-00668-9
Article
Google Scholar
Veverka J, Robinson M, Thomas P, Murchie S, Bell JF 3rd, Izenberg N, Chapman C, Harch A, Bell M, Carcich B, Cheng A, Clark B, Domingue D, Dunham D, Farquhar R, Gaffey MJ, Hawkins E, Joseph J, Kirk R, Li H, Lucey P, Malin M, Martin P, McFadden L, Merline WJ, Miller JK (2000) NEAR at eros: imaging and spectral results. Science 289(5487):2088–2097. https://doi.org/10.1126/science.289.5487.2088
Article
Google Scholar
Veverka J, Thomas PC, Robinson M, Murchie S, Chapman C, Bell M, Harch A, Merline WJ, Bell JF 3rd, Bussey B, Carcich B, Cheng A, Clark B, Domingue D, Dunham D, Farquhar R, Gaffey MJ, Hawkins E, Izenberg N, Joseph J, Kirk R, Li H, Lucey P, Malin M, McFadden L, Miller JK, Owen WM Jr, Peterson C, Prockter L, Warren J, Wellnitz D, Williams BG, Yeomans DK (2001) Imaging of small-scale features on 433 Eros from NEAR: evidence for a complex regolith. Science 292(5516):484–488. https://doi.org/10.1126/science.1058651
Article
Google Scholar
Walsh KJ (2018) Rubble pile asteroids. Annu Rev Astron Astr 56(1):593–624. https://doi.org/10.1146/annurev-astro-081817-052013
Article
Google Scholar
Wang Y, Wu XJ (2020) Analysis of Phobos’ dynamical environment considering effects of ephemerides and physical libration. Mon Not R Astron Soc 497(1):416–434. https://doi.org/10.1093/mnras/staa1948
Article
Google Scholar
Wang X, Schwan J, Hsu HW, Grün E, Horányi M (2016) Dust charging and transport on airless planetary bodies. Geophys Res Lett 43(12):6103–6110. https://doi.org/10.1002/2016gl069491
Article
Google Scholar
Watanabe S, Hirabayashi M, Hirata N, Hirata N, Noguchi R, Shimaki Y, Ikeda H, Tatsumi E, Yoshikawa M, Kikuchi S, Yabuta H, Nakamura T, Tachibana S, Ishihara Y, Morota T, Kitazato K, Sakatani N, Matsumoto K, Wada K, Senshu H, Honda C, Michikami T, Takeuchi H, Kouyama T, Honda R, Kameda S, Fuse T, Miyamoto H, Komatsu G, Sugita S, Okada T, Namiki N, Arakawa M, Ishiguro M, Abe M, Gaskell R, Palmer E, Barnouin OS, Michel P, French AS, McMahon JW, Scheeres DJ, Abell PA, Yamamoto Y, Tanaka S, Shirai K, Matsuoka M, Yamada M, Yokota Y, Suzuki H, Yoshioka K, Cho Y, Tanaka S, Nishikawa N, Sugiyama T, Kikuchi H, Hemmi R, Yamaguchi T, Ogawa N, Ono G, Mimasu Y, Yoshikawa K, Takahashi T, Takei Y, Fujii A, Hirose C, Iwata T, Hayakawa M, Hosoda S, Mori O, Sawada H, Shimada T, Soldini S, Yano H, Tsukizaki R, Ozaki M, Iijima Y, Ogawa K, Fujimoto M, Ho TM, Moussi A, Jaumann R, Bibring JP, Krause C, Terui F, Saiki T, Nakazawa S, Tsuda Y (2019) Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu-A spinning top-shaped rubble pile. Science 364(6437):268–272. https://doi.org/10.1126/science.aav8032
Article
Google Scholar
Willman BM, Boles WW, McKay DS, Allen CC (1995) Properties of lunar soil simulant JSC-1. J Aerospace Eng 8(2):77–87. https://doi.org/10.1061/(asce)0893-1321(1995)8:2(77)
Article
Google Scholar
Willner K, Oberst J, Hussmann H, Giese B, Hoffmann H, Matz KD, Roatsch T, Duxbury T (2010) Phobos control point network, rotation, and shape. Earth Planet Sci Lett 294(3–4):541–546. https://doi.org/10.1016/j.epsl.2009.07.033
Article
Google Scholar
Willner K, Shi X, Oberst J (2014) Phobos’ shape and topography models. Planet Space Sci 102:51–59. https://doi.org/10.1016/j.pss.2013.12.006
Article
Google Scholar
Wilson L, Keil K, Browning LB, Krot AN, Bourcier W (1999) Early aqueous alteration, explosive disruption, and reprocessing of asteroids. Meteorit Planet Sci 34(4):541–557. https://doi.org/10.1111/j.1945-5100.1999.tb01362.x
Article
Google Scholar
Yang X, Yan JG, Andert T, Ye M, Patzold M, Hahn M, Jin WT, Li F, Barriot JP (2019) The second-degree gravity coefficients of Phobos from two Mars Express flybys. Mon Not R Astron Soc 490(2):2007–2012. https://doi.org/10.1093/mnras/stz2695
Article
Google Scholar
Yano H, Kubota T, Miyamoto H, Okada T, Scheeres D, Takagi Y, Yoshida K, Abe M, Abe S, Barnouin-Jha O, Fujiwara A, Hasegawa S, Hashimoto T, Ishiguro M, Kato M, Kawaguchi J, Mukai T, Saito J, Sasaki S, Yoshikawa M (2006) Touchdown of the Hayabusa spacecraft at the Muses Sea on Itokawa. Science 312(5778):1350–1353. https://doi.org/10.1126/science.1126164
Article
Google Scholar
Yoder CF (1982) Tidal rigidity of Phobos. Icarus 49(3):327–346. https://doi.org/10.1016/0019-1035(82)90040-9
Article
Google Scholar
Zeng X, Li X, Martin DJP, Tang H, Yu W, Yang K, Wang Z, Wang S (2019) The Itokawa regolith simulant IRS-1 as an S-type asteroid surface analogue. Icarus 333:371–384. https://doi.org/10.1016/j.icarus.2019.06.011
Article
Google Scholar
Zolensky ME, Nakamura K, Gounelle M, Mikouchi T, Kasama T, Tachikawa O, Tonui E (2002) Mineralogy of Tagish Lake: an ungrouped type 2 carbonaceous chondrite. Meteorit Planet Sci 37(5):737–761. https://doi.org/10.1111/j.1945-5100.2002.tb00852.x
Article
Google Scholar