Alexander MJ, Geller M, McLandress C, Polavarapu S, Preusse P, Sassi F, Sato K, Eckermann S, Ern M, Hertzog A, Kawatani Y, Pulido M, Shaw TA, Sigmond M, Vincent R, Watanabe S (2010) Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q J Royal Meteorolog Soci 136(650):1103–1124

Article
Google Scholar

Alexander SP, Klekociuk AR, Murphy DJ (2011) Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69\({}^\circ\)S, 78\({}^\circ\)E). J Geophys Res 116(D13):D13109

Article
Google Scholar

Antonita TM, Ramkumar G, Kumar KK, Deepa V (2008) Meteor wind radar observations of gravity wave momentum fluxes and their forcing toward the Mesospheric Semiannual Oscillation. J Geophys Res 113(D10):D10115

Article
Google Scholar

Balsley BB, Garello R (1985) The kinetic energy density in the troposphere, stratosphere and mesosphere: a preliminary study using the Poker Flat MST radar in Alaska. Radio Sci 20(6):1355–1361

Article
Google Scholar

Baumgarten G (2010) Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km. Atmos Meas Tech 3(6):1509–1518

Article
Google Scholar

Baumgarten G, Fiedler J, Hildebrand J, Lübken F-J (2015) Inertia gravity wave in the stratosphere and mesosphere observed by Doppler wind and temperature lidar. Geophys Res Lett 42(24):929

Article
Google Scholar

Becker E, Vadas SL (2018) Secondary gravity waves in the winter mesosphere: results From a high-resolution global circulation model. J Geophys Res Atmos 123(5):2605–2627

Article
Google Scholar

Bossert K, Vadas SL, Hoffmann L, Becker E, Harvey VL, Bramberger M (2020) Observations of stratospheric gravity waves over Europe on 12 January 2016: the role of the polar night jet. J Geophys Res Atmos 125(21):e2020JD032893

Article
Google Scholar

Browning KA, Wexler R (1968) The determination of kinematic properties of a wind field using Doppler radar. J Appl Meteorol 7(1):105–113

Article
Google Scholar

Burnside RG, Herrero FA, Meriwether JW, Walker JCG (1981) Optical observations of thermospheric dynamics at Arecibo. J Geophys Res 86(A7):5532

Article
Google Scholar

Chanin M-L, Hauchecorne A (1981) Lidar observation of gravity and tidal waves in the stratosphere and mesosphere. J Geophys Res 86(C10):9715

Article
Google Scholar

Chau JL, Clahsen M (2019) Empirical phase calibration for multistatic specular meteor radars using a beamforming approach. Radio Sci 54(1):60–71

Article
Google Scholar

Chau JL, Stober G, Hall CM, Tsutsumi M, Laskar FI, Hoffmann P (2017) Polar mesospheric horizontal divergence and relative vorticity measurements using multiple specular meteor radars. Radio Scie 52(7):811–828

Article
Google Scholar

Chau JL, Urco JM, Vierinen JP, Volz RA, Clahsen M, Pfeffer N, Trautner J (2019) Novel specular meteor radar systems using coherent MIMO techniques to study the mesosphere and lower thermosphere. Atmos Meas Tech 12(4):2113–2127

Article
Google Scholar

Chau JL, Urco JM, Vierinen J, Harding BJ, Clahsen M, Pfeffer N, Kuyeng KM, Milla MA, Erickson PJ (2021) Multistatic specular meteor radar network in Peru: system description and initial results. Earth and Space Science 8(1):e2020EA001293. https://doi.org/10.1029/2020EA001293

Article
Google Scholar

Chen C, Chu X (2017) Two-dimensional Morlet wavelet transform and its application to wave recognition methodology of automatically extracting two-dimensional wave packets from lidar observations in Antarctica. J Atmos Solar Terr Phys 162:28–47

Article
Google Scholar

Chen C, Chu X, McDonald AJ, Vadas SL, Yu Z, Fong W, Lu X (2013) Inertia-gravity waves in Antarctica: A case study using simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8\({}^\circ\)S, 166.7\({}^\circ\)E). J Geophys Res Atmos 118(7):2794–2808

Article
Google Scholar

Chen C, Chu X, Zhao J, Roberts BR, Yu Z, Fong W, Lu X, Smith JA (2016) Lidar observations of persistent gravity waves with periods of 3–10 h in the Antarctic middle and upper atmosphere at McMurdo (77.83\({}^\circ\)S, 166.67\({}^\circ\)E). J Geophys Res Space Phys 121(2):1483–1502

Article
Google Scholar

Conde M, Smith RW (1998) Spatial structure in the thermospheric horizontal wind above Poker Flat, Alaska, during solar minimum. J Geophys Res Space Phys 103(A5):9449–9471

Article
Google Scholar

Conte JF, Chau JL, Urco JM, Latteck R, Vierinen J, Salvador JO (2021) First studies of mesosphere and lower thermosphere dynamics using a multistatic specular meteor radar network over Southern Patagonia. Earth and Space Science 8(2):e2020EA001356. https://doi.org/10.1029/2020EA001356

Article
Google Scholar

Egito F, Andrioli V, Batista P (2016) Vertical winds and momentum fluxes due to equatorial planetary scale waves using all-sky meteor radar over Brazilian region. J Atmos Solar Terr Phys 149:108–119

Article
Google Scholar

Espy PJ, Jones GOL, Swenson GR, Tang J, Taylor MJ (2004) Seasonal variations of the gravity wave momentum flux in the Antarctic mesosphere and lower thermosphere. J Geophys Res Atmos 109(D23):1–9

Article
Google Scholar

Feraco F, Marino R, Pumir A, Primavera L, Mininni PD, Pouquet A, Rosenberg D (2018) Vertical drafts and mixing in stratified turbulence: sharp transition with Froude number. EPL Europhys Lett 123(4):44002

Article
Google Scholar

Feraco F, Marino R, Primavera L, Pumir A, Mininni PD, Rosenberg D, Pouquet A, Foldes A, Lévêque E, Camporeale E, Cerri S, Charuvil Asokan H, Chau JL, Bertoglio J, Salizzoni P, Marro M (2021) Connecting large-scale velocity and temperature bursts with small-scale intermittency in stratified turbulence. EPL Europhys Lett. 135(1):14001

Article
Google Scholar

Forbes JM, Portnyagin YI, Makarov NA, Palo SE, Merzlyakov EG, Zhang X (1999) Dynamics of the lower thermosphere over South Pole from meteor radar wind measurements. Earth, Planets and Space 51(7–8):611–620. https://doi.org/10.1186/BF03353219.pdf

Article
Google Scholar

Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41(1):1003

Article
Google Scholar

Fritts DC, Janches D, Hocking WK (2010) Southern Argentina Agile Meteor Radar: initial assessment of gravity wave momentum fluxes. J Geophys Res 115(D19):D19123

Article
Google Scholar

Fritts DC, Janches D, Hocking WK, Mitchell NJ, Taylor MJ (2012) Assessment of gravity wave momentum flux measurement capabilities by meteor radars having different transmitter power and antenna configurations. J Geophys Res Atmos 117(D10)

Fritts DC, Vadas SL, Wan K, Werne JA (2006) Mean and variable forcing of the middle atmosphere by gravity waves. J Atmos Solar Terr Phys 68(3–5):247–265

Article
Google Scholar

Gage K, Balsley B (1984) MST radar studies of wind and turbulence in the middle atmosphere. J Atmos Terr Phys 46(9):739–753

Article
Google Scholar

Gardner CS, Hostetler CA, Franke SJ (1993) Gravity wave models for the horizontal wave number spectra of atmospheric velocity and density fluctuations. J Geophys Re Atmos 98(D1):1035–1049

Article
Google Scholar

Gardner CS, Voelz DG (1987) Lidar studies of the nighttime sodium layer over Urbana, Illinois: 2. Gravity waves. J Geophys Res 92(A5):4673

Article
Google Scholar

Geller MA, Alexander MJ, Love PT, Bacmeister J, Ern M, Hertzog A, Manzini E, Preusse P, Sato K, Scaife AA, Zhou T (2013) A comparison between gravity wave momentum fluxes in observations and climate models. J Clim 26(17):6383–6405

Article
Google Scholar

He M, Chau JL, Stober G, Li G, Ning B, Hoffmann P (2018) Relations between semidiurnal tidal variants through diagnosing the Zonal wavenumber using a phase differencing technique based on two ground-based detectors. J Geophys Res Atmos 123(8):4015–4026

Article
Google Scholar

Heale CJ, Bossert K, Vadas SL, Hoffmann L, Dörnbrack A, Stober G, Snively JB, Jacobi C (2020) Secondary gravity waves generated by breaking mountain waves over Europe. J Geophys Res Atmos 125(5)

Herbert C, Marino R, Rosenberg D, Pouquet A (2016) Waves and vortices in the inverse cascade regime of stratified turbulence with or without rotation. J Fluid Mech 806:165–204

Article
Google Scholar

Hildebrand J, Baumgarten G, Fiedler J, Lübken F-J (2017) Winds and temperatures of the Arctic middle atmosphere during January measured by Doppler lidar. Atmos Chem Phys 17(21):13345–13359

Article
Google Scholar

Hocking WK (2001) Middle atmosphere dynamical studies at Resolute Bay over a full representative year: Mman winds, tides, and special oscillations. Radio Sci 36(6):1795–1822

Article
Google Scholar

Hocking WK (2005) A new approach to momentum flux determinations using SKiYMET meteor radars. Annales Geophysicae 23(7):2433–2439

Article
Google Scholar

Hocking W, Fuller B, Vandepeer B (2001) Real-time determination of meteor-related parameters utilizing modern digital technology. J Atmos Solar Terr Phys 63(2–3):155–169

Article
Google Scholar

Holdsworth DA, Reid IM, Cervera MA (2004) Buckland Park all-sky interferometric meteor radar. Radio Sci 39(5)

Holton JR (1983) The influence of gravity wave breaking on the general circulation of the middle atmosphere. J Atmos Sci 40(10):2497–2507

Article
Google Scholar

Jones J, Webster AR, Hocking WK (1998) An improved interferometer design for use with meteor radars. Radio Sci 33(1):55–65

Article
Google Scholar

Kaifler N, Kaifler B, Ehard B, Gisinger S, Dörnbrack A, Rapp M, Kivi R, Kozlovsky A, Lester M, Liley B (2017) Observational indications of downward-propagating gravity waves in middle atmosphere lidar data. J Atmos Solar Terr Phys 162:16–27

Article
Google Scholar

Khintchine A (1934) Korrelationstheorie der stationären stochastischen Prozesse. Mathematische Annalen 109(1):604–615

Article
Google Scholar

Kim, Y., Eckermann, S. D., and Chun, H. (2003). An overview of the past, present and future of gravity–wave drag parametrization for numerical climate and weather prediction models. Atmos Ocean 41(1)

Kogure M, Nakamura T, Ejiri MK, Nishiyama T, Tomikawa Y, Tsutsumi M (2018) Effects of horizontal wind structure on a gravity wave event in the middle atmosphere over Syowa (69\({}^\circ\)S, 40\({}^\circ\)E), the Antarctic. Geophys Res Lett 45(10):5151–5157

Article
Google Scholar

Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C R Acad Sci URSS 30:301–305

Google Scholar

Larsen MF, Fukao S, Aruga O, Yamanaka MD, Tsuda T, Kato S (1991) A comparison of VHF radar vertical-velocity measurements by a direct vertical-beam method and by a VAD technique. J Atmos Ocean Technol 8(6):766–776

Article
Google Scholar

Larsen, M. F. and Meriwether, J. W. (2012). Vertical winds in the thermosphere. J Geophys Res Space Phys 117(A9)

Lima L, Batista P, Takahashi H, Clemesha B (2004) Quasi-two-day wave observed by meteor radar at 22.7\({}^\circ\)S. J Atmos Solar Terr Phys 66(6–9):529–537

Article
Google Scholar

Lindzen RS (1981) Turbulence and stress owing to gravity wave and tidal breakdown. J Geophys Res Oceans 86(C10):9707–9714

Article
Google Scholar

Liu HL (2019) Quantifying gravity wave forcing using scale invariance. Nat Commun 10(1):1–12

Google Scholar

Liu H-L, McInerney JM, Santos S, Lauritzen PH, Taylor MA, Pedatella NM (2014) Gravity waves simulated by high-resolution whole atmosphere community climate model. Geophys Res Lett 41(24):9106–9112

Article
Google Scholar

Lu X, Chu X, Li H, Chen C, Smith JA, Vadas SL (2017) Statistical characterization of high-to-medium frequency mesoscale gravity waves by lidar-measured vertical winds and temperatures in the MLT. J Atmos Solar Terr Phys 162:3–15

Article
Google Scholar

Manning L, Villard O, Peterson A (1950) Statistical characterization of high-to-medium frequency mesoscale gravity waves by lidar-measured vertical winds and temperatures in the MLT. Proc IRE 38(8):877–883

Article
Google Scholar

Manson AH, Meek CE, Hall C, Hocking WK, MacDougall J, Franke S, Igarashi K, Riggin D, Fritts DC, Vincent RA (1999) Gravity wave spectra, directions and wave interactions: global MLT-MFR network. Earth, Planets and Space 51(7–8):543–562. https://doi.org/10.1186/BF03353214.pdf

Article
Google Scholar

Marino R, Mininni PD, Rosenberg D, Pouquet A (2013) Inverse cascades in rotating stratified turbulence: fast growth of large scales. EPL Europhys Lett 102(4):44006

Article
Google Scholar

Marino R, Mininni PD, Rosenberg DL, Pouquet A (2014) Large-scale anisotropy in stably stratified rotating flows. Phys Rev E 90(2):023018

Article
Google Scholar

Marino R, Pouquet A, Rosenberg D (2015a) Resolving the paradox of oceanic large-scale balance and small-scale mixing. Phys Revi Lett 114(11):114504

Article
Google Scholar

Marino R, Rosenberg D, Herbert C, Pouquet A (2015b) Interplay of waves and eddies in rotating stratified turbulence and the link with kinetic-potential energy partition. EPL Europhys Lett 112(4):49001

Article
Google Scholar

McLandress C (1998) On the importance of gravity waves in the middle atmosphere and their parameterization in general circulation models. J Atmosp Solar Terr Phys 60(14):1357–1383

Article
Google Scholar

Medeiros AF (2003) An investigation of gravity wave activity in the low-latitude upper mesosphere: propagation direction and wind filtering. J Geophys Res 108(D14):4411

Article
Google Scholar

Meriwether J, Faivre M, Fesen C, Sherwood P, Veliz O (2008) New results on equatorial thermospheric winds and the midnight temperature maximum. Annales Geophysicae 26(3):447–466

Article
Google Scholar

Murphy DJ, Alexander SP, Klekociuk AR, Love PT, Vincent RA (2014) Radiosonde observations of gravity waves in the lower stratosphere over Davis, Antarctica. J Geophys Res Atmos 119(21):973

Article
Google Scholar

Nakamura T, Tsuda T, Fukao S, Kato S, Vincent RA (1993) Comparison of the mesospheric gravity waves observed with the MU Radar (35\({}^\circ\)N) and the Adelaide MF Radar (35\({}^\circ\)S). Geophys Res Lett 20(9):803–806

Article
Google Scholar

Nappo CJ (2012) International Geophysics, Volume 102 : Introduction to Atmospheric Gravity Waves (2nd Edition). Academic Press, Saint Louis, MO, USA

Placke M, Hoffmann P, Becker E, Jacobi C, Singer W, Rapp M (2011a) Gravity wave momentum fluxes in the MLT-Part II: Meteor radar investigations at high and midlatitudes in comparison with modeling studies. J Atmos Solar Terr Phys 73(9):911–920

Article
Google Scholar

Placke M, Stober G, Jacobi C (2011b) Gravity wave momentum fluxes in the MLT-Part I: Seasonal variation at Collm (51.3\({}^\circ\)N, 13.0\({}^\circ\)E). J Atmos Solar Terr Phys 73(9):904–910

Article
Google Scholar

Placke M, Hoffmann P, Latteck R, Rapp M (2015) Gravity wave momentum fluxes from MF and meteor radar measurements in the polar MLT region. J Geophys Res Space Phys 120(1):736–750

Article
Google Scholar

Plougonven R, Zhang F (2014) Internal gravity waves from atmospheric jets and fronts. Rev Geophys 52(1):33–76

Article
Google Scholar

Pouquet A, Marino R, Mininni PD, Rosenberg D (2017) Dual constant-flux energy cascades to both large scales and small scales. Phys Fluids 29(11)

Pouquet A, Rosenberg D, Stawarz JE, Marino R (2019) HHelicity dynamics, inverse, and bidirectional cascades in fluid and magnetohydrodynamic turbulence: a brief review. Earth Space Sci 6(3):351–369

Article
Google Scholar

Reid IM (1990) Radar observtions of stratified layers in the mesosphere and lower thermosphere (50–100 km). Advances in Space Research 10(10):7–19

Article
Google Scholar

Reid IM, McIntosh DL, Murphy DJ, Vincent RA (2018) Mesospheric radar wind comparisons at high and middle southern latitudes. Earth, Planets and Space 70(1):84. https://doi.org/10.1186/s40623-018-0861-1

Article
Google Scholar

Rosenberg D, Pouquet A, Marino R, Mininni PD (2015) Evidence for Bolgiano-Obukhov scaling in rotating stratified turbulence using high-resolution direct numerical simulations. Phys Fluids 27(5):055105

Article
Google Scholar

Sato K, Yoshiki M (2008) Gravity wave generation around the polar vortex in the stratosphere revealed by 3-hourly radiosonde observations at Syowa Station. J Atmos Sci 65(12):3719–3735

Article
Google Scholar

Sato K, Kohma M, Tsutsumi M, Sato T (2017) Frequency spectra and vertical profiles of wind fluctuations in the summer Antarctic mesosphere revealed by MST radar observations. J Geophys Res Atmos 122(1):3–19

Article
Google Scholar

Senft DC, Gardner CS (1991) Seasonal variability of gravity wave activity and spectra in the mesopause region at Urbana. J Geophys Res 96(D9):17229

Article
Google Scholar

Spargo AJ, Reid IM, MacKinnon AD (2019) Multistatic meteor radar observations of gravity-wave-tidal interaction over southern Australia. Atmos Meas Tech 12(9):4791–4812

Article
Google Scholar

Stober G, Chau JL (2015) A multistatic and multifrequency novel approach for specular meteor radars to improve wind measurements in the MLT region. Radio Sci 50(5):431–442

Article
Google Scholar

Strelnikova I, Baumgarten G, Lübken F-J (2020) Advanced hodograph-based analysis technique to derive gravity-wave parameters from lidar observations. Atmospheric Measurement Techniques 13(2):479–499

Article
Google Scholar

Suresh Babu V, Ramkumar G, Rachel John S (2012) Seasonal variation of planetary wave momentum flux and the forcing towards mean flow acceleration in the MLT region. J Atmos Solar Terr Phys 78–79:53–61

Article
Google Scholar

Swenson GR, Mende SB (1994) OH emission and gravity waves (including a breaking wave) in all-sky imagery from Bear Lake, UT. Geophys Res Lett 21(20):2239–2242

Article
Google Scholar

Taylor MJ, Pautet P, Fritts DC, Kaifler B, Smith SM, Zhao Y, Criddle NR, McLaughlin P, Pendleton WR, McCarthy MP, Hernandez G, Eckermann SD, Doyle J, Rapp M, Liley B, Russell JM (2019) Large-amplitude mountain waves in the mesosphere observed on 21 June 2014 during DEEPWAVE: 1. Wave development, scales, momentum fluxes, and environmental sensitivity. J Geophys Res Atmos 124(19):10364–10384

Article
Google Scholar

Thorsen D, Franke SJ, Kudeki E (1997) A new approach to MF radar interferometry for estimating mean winds and momentum flux. Radio Sci 32(2):707–726

Article
Google Scholar

Tsutsumi M, Sato K, Sato T, Kohma M, Nakamura T, Nishimura K, Tomikawa Y (2017) haracteristics of mesosphere echoes over Antarctica obtained Using PANSY and MF radars. SOLA 13A(Special-Edition):19–23

Article
Google Scholar

Urco JM, Chau JL, Milla MA, Vierinen JP, Weber T (2018) Coherent MIMO to improve aperture synthesis radar imaging of field-aligned irregularities: first results at Jicamarca. IEEE Trans Geosci Remote Sens 56(5):2980–2990

Article
Google Scholar

Urco JM, Chau JL, Weber T, Vierinen JP, Volz R (2019) Sparse signal recovery in MIMO specular meteor radars with waveform diversity. IEEE Trans Geosci Remote Sens 57(12):10088–10098

Article
Google Scholar

Vadas SL, Becker E (2018) Numerical modeling of the excitation, propagation, and dissipation of primary and secondary gravity waves during wintertime at McMurdo Station in the Antarctic. J Geophys Res Atmos 123(17):9326–9369

Article
Google Scholar

Vadas SL, Zhao J, Chu X, Becker E (2018) The excitation of secondary gravity waves from local body forces: theory and observation. J Geophys Res Atmos 123(17):9296–9325

Article
Google Scholar

Vargas F, Swenson G, Liu A, Gobbi D (2007) O(1 S), OH, and O 2 (b) airglow layer perturbations due to AGWs and their implied effects on the atmosphere. J Geophys Res 112(D14):D14102

Article
Google Scholar

Vargas F, Swenson G, Liu A, Pautet D (2016) Evidence of the excitation of a ring-like gravity wave in the mesosphere over the Andes Lidar Observatory. J Geophys Res Atmos 121(15):8896–8912

Article
Google Scholar

Vargas F, Yang G, Batista P, Gobbi D (2019) Growth rate of gravity wave amplitudes observed in sodium lidar density profiles and nightglow image data. Atmosphere 10(12):750

Article
Google Scholar

Vargas F, Chau JL, Charuvil Asokan H, Gerding M (2021) Mesospheric gravity wave activity estimated via airglow imagery, multistatic meteor radar, and SABER data taken during the SIMONe-2018 campaign. Atmos Chem Phys 21(17):13631–13654

Article
Google Scholar

Vierinen J, Chau JL, Charuvil Asokan H, Urco JM, Clahsen M, Avsarkisov V, Marino R, Volz R (2019) Observing mesospheric turbulence with specular meteor radars: a novel method for estimating second-order statistics of wind velocity. Earth Space Sci 6(7):1171–1195

Article
Google Scholar

Vierinen J, Chau JL, Pfeffer N, Clahsen M, Stober G (2016) Coded continuous wave meteor radar. Atmos Meas Techn 9(2):829–839

Article
Google Scholar

Vincent RA, Joan Alexander M (2000) Gravity waves in the tropical lower stratosphere: an observational study of seasonal and interannual variability. J Geophys Res Atmos 105(D14):17971–17982

Article
Google Scholar

Vincent RA, Reid IM (1983) HF Doppler measurements of mesospheric gravity wave momentum fluxes. J Atmos Sci 40(5):1321–1333

Article
Google Scholar

Waldteufel P, Corbin H (1979) On the analysis of single-Doppler radar data. J Appl Meteorol 18(4):532–542

Article
Google Scholar

Weinstock J (1996) Spectra and a global source of gravity waves for the middle atmosphere. Adv Space Res 17(11):67–76

Article
Google Scholar

Wiener N (1930) Generalized harmonic analysis. Acta Mathematica 55(1):117–258

Article
Google Scholar

Wüst S, Offenwanger T, Schmidt C, Bittner M, Jacobi C, Stober G, Yee JH, Mlynczak MG, Russell III JM (2017) Derivation of horizontal and vertical wavelengths using a scanning OH(3-1) airglow spectrometer. Atmos Meas Tech. Discussions, pages 1–26

Yasui R, Sato K, Tsutsumi M (2016) Seasonal and interannual variation of mesospheric gravity waves based on MF radar observations over 15 years at Syowa Station in the Antarctic. SOLA 12:46–50

Article
Google Scholar

Yiğit E, Medvedev AS (2015) Internal wave coupling processes in Earth’s atmosphere. Adv Space Res 55(4):983–1003

Article
Google Scholar

Younger JP, Reid IM (2017) Interferometer angle-of-arrival determination using precalculated phases. Radio Sci 52(9):1058–1066

Article
Google Scholar

Younger JP, Reid IM, Vincent RA, Murphy DJ (2015) A method for estimating the height of a mesospheric density level using meteor radar. Geophys Res Lett 42(14):6106–6111

Article
Google Scholar

Zhou QH (2000) Incoherent scatter radar measurement of vertical winds in the mesosphere. Geophys Res Lett 27(12):1803–1806

Article
Google Scholar