Alexander MJ, Geller M, McLandress C, Polavarapu S, Preusse P, Sassi F, Sato K, Eckermann S, Ern M, Hertzog A, Kawatani Y, Pulido M, Shaw TA, Sigmond M, Vincent R, Watanabe S (2010) Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q J Royal Meteorolog Soci 136(650):1103–1124
Article
Google Scholar
Alexander SP, Klekociuk AR, Murphy DJ (2011) Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69\({}^\circ\)S, 78\({}^\circ\)E). J Geophys Res 116(D13):D13109
Article
Google Scholar
Antonita TM, Ramkumar G, Kumar KK, Deepa V (2008) Meteor wind radar observations of gravity wave momentum fluxes and their forcing toward the Mesospheric Semiannual Oscillation. J Geophys Res 113(D10):D10115
Article
Google Scholar
Balsley BB, Garello R (1985) The kinetic energy density in the troposphere, stratosphere and mesosphere: a preliminary study using the Poker Flat MST radar in Alaska. Radio Sci 20(6):1355–1361
Article
Google Scholar
Baumgarten G (2010) Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km. Atmos Meas Tech 3(6):1509–1518
Article
Google Scholar
Baumgarten G, Fiedler J, Hildebrand J, Lübken F-J (2015) Inertia gravity wave in the stratosphere and mesosphere observed by Doppler wind and temperature lidar. Geophys Res Lett 42(24):929
Article
Google Scholar
Becker E, Vadas SL (2018) Secondary gravity waves in the winter mesosphere: results From a high-resolution global circulation model. J Geophys Res Atmos 123(5):2605–2627
Article
Google Scholar
Bossert K, Vadas SL, Hoffmann L, Becker E, Harvey VL, Bramberger M (2020) Observations of stratospheric gravity waves over Europe on 12 January 2016: the role of the polar night jet. J Geophys Res Atmos 125(21):e2020JD032893
Article
Google Scholar
Browning KA, Wexler R (1968) The determination of kinematic properties of a wind field using Doppler radar. J Appl Meteorol 7(1):105–113
Article
Google Scholar
Burnside RG, Herrero FA, Meriwether JW, Walker JCG (1981) Optical observations of thermospheric dynamics at Arecibo. J Geophys Res 86(A7):5532
Article
Google Scholar
Chanin M-L, Hauchecorne A (1981) Lidar observation of gravity and tidal waves in the stratosphere and mesosphere. J Geophys Res 86(C10):9715
Article
Google Scholar
Chau JL, Clahsen M (2019) Empirical phase calibration for multistatic specular meteor radars using a beamforming approach. Radio Sci 54(1):60–71
Article
Google Scholar
Chau JL, Stober G, Hall CM, Tsutsumi M, Laskar FI, Hoffmann P (2017) Polar mesospheric horizontal divergence and relative vorticity measurements using multiple specular meteor radars. Radio Scie 52(7):811–828
Article
Google Scholar
Chau JL, Urco JM, Vierinen JP, Volz RA, Clahsen M, Pfeffer N, Trautner J (2019) Novel specular meteor radar systems using coherent MIMO techniques to study the mesosphere and lower thermosphere. Atmos Meas Tech 12(4):2113–2127
Article
Google Scholar
Chau JL, Urco JM, Vierinen J, Harding BJ, Clahsen M, Pfeffer N, Kuyeng KM, Milla MA, Erickson PJ (2021) Multistatic specular meteor radar network in Peru: system description and initial results. Earth and Space Science 8(1):e2020EA001293. https://doi.org/10.1029/2020EA001293
Article
Google Scholar
Chen C, Chu X (2017) Two-dimensional Morlet wavelet transform and its application to wave recognition methodology of automatically extracting two-dimensional wave packets from lidar observations in Antarctica. J Atmos Solar Terr Phys 162:28–47
Article
Google Scholar
Chen C, Chu X, McDonald AJ, Vadas SL, Yu Z, Fong W, Lu X (2013) Inertia-gravity waves in Antarctica: A case study using simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8\({}^\circ\)S, 166.7\({}^\circ\)E). J Geophys Res Atmos 118(7):2794–2808
Article
Google Scholar
Chen C, Chu X, Zhao J, Roberts BR, Yu Z, Fong W, Lu X, Smith JA (2016) Lidar observations of persistent gravity waves with periods of 3–10 h in the Antarctic middle and upper atmosphere at McMurdo (77.83\({}^\circ\)S, 166.67\({}^\circ\)E). J Geophys Res Space Phys 121(2):1483–1502
Article
Google Scholar
Conde M, Smith RW (1998) Spatial structure in the thermospheric horizontal wind above Poker Flat, Alaska, during solar minimum. J Geophys Res Space Phys 103(A5):9449–9471
Article
Google Scholar
Conte JF, Chau JL, Urco JM, Latteck R, Vierinen J, Salvador JO (2021) First studies of mesosphere and lower thermosphere dynamics using a multistatic specular meteor radar network over Southern Patagonia. Earth and Space Science 8(2):e2020EA001356. https://doi.org/10.1029/2020EA001356
Article
Google Scholar
Egito F, Andrioli V, Batista P (2016) Vertical winds and momentum fluxes due to equatorial planetary scale waves using all-sky meteor radar over Brazilian region. J Atmos Solar Terr Phys 149:108–119
Article
Google Scholar
Espy PJ, Jones GOL, Swenson GR, Tang J, Taylor MJ (2004) Seasonal variations of the gravity wave momentum flux in the Antarctic mesosphere and lower thermosphere. J Geophys Res Atmos 109(D23):1–9
Article
Google Scholar
Feraco F, Marino R, Pumir A, Primavera L, Mininni PD, Pouquet A, Rosenberg D (2018) Vertical drafts and mixing in stratified turbulence: sharp transition with Froude number. EPL Europhys Lett 123(4):44002
Article
Google Scholar
Feraco F, Marino R, Primavera L, Pumir A, Mininni PD, Rosenberg D, Pouquet A, Foldes A, Lévêque E, Camporeale E, Cerri S, Charuvil Asokan H, Chau JL, Bertoglio J, Salizzoni P, Marro M (2021) Connecting large-scale velocity and temperature bursts with small-scale intermittency in stratified turbulence. EPL Europhys Lett. 135(1):14001
Article
Google Scholar
Forbes JM, Portnyagin YI, Makarov NA, Palo SE, Merzlyakov EG, Zhang X (1999) Dynamics of the lower thermosphere over South Pole from meteor radar wind measurements. Earth, Planets and Space 51(7–8):611–620. https://doi.org/10.1186/BF03353219.pdf
Article
Google Scholar
Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41(1):1003
Article
Google Scholar
Fritts DC, Janches D, Hocking WK (2010) Southern Argentina Agile Meteor Radar: initial assessment of gravity wave momentum fluxes. J Geophys Res 115(D19):D19123
Article
Google Scholar
Fritts DC, Janches D, Hocking WK, Mitchell NJ, Taylor MJ (2012) Assessment of gravity wave momentum flux measurement capabilities by meteor radars having different transmitter power and antenna configurations. J Geophys Res Atmos 117(D10)
Fritts DC, Vadas SL, Wan K, Werne JA (2006) Mean and variable forcing of the middle atmosphere by gravity waves. J Atmos Solar Terr Phys 68(3–5):247–265
Article
Google Scholar
Gage K, Balsley B (1984) MST radar studies of wind and turbulence in the middle atmosphere. J Atmos Terr Phys 46(9):739–753
Article
Google Scholar
Gardner CS, Hostetler CA, Franke SJ (1993) Gravity wave models for the horizontal wave number spectra of atmospheric velocity and density fluctuations. J Geophys Re Atmos 98(D1):1035–1049
Article
Google Scholar
Gardner CS, Voelz DG (1987) Lidar studies of the nighttime sodium layer over Urbana, Illinois: 2. Gravity waves. J Geophys Res 92(A5):4673
Article
Google Scholar
Geller MA, Alexander MJ, Love PT, Bacmeister J, Ern M, Hertzog A, Manzini E, Preusse P, Sato K, Scaife AA, Zhou T (2013) A comparison between gravity wave momentum fluxes in observations and climate models. J Clim 26(17):6383–6405
Article
Google Scholar
He M, Chau JL, Stober G, Li G, Ning B, Hoffmann P (2018) Relations between semidiurnal tidal variants through diagnosing the Zonal wavenumber using a phase differencing technique based on two ground-based detectors. J Geophys Res Atmos 123(8):4015–4026
Article
Google Scholar
Heale CJ, Bossert K, Vadas SL, Hoffmann L, Dörnbrack A, Stober G, Snively JB, Jacobi C (2020) Secondary gravity waves generated by breaking mountain waves over Europe. J Geophys Res Atmos 125(5)
Herbert C, Marino R, Rosenberg D, Pouquet A (2016) Waves and vortices in the inverse cascade regime of stratified turbulence with or without rotation. J Fluid Mech 806:165–204
Article
Google Scholar
Hildebrand J, Baumgarten G, Fiedler J, Lübken F-J (2017) Winds and temperatures of the Arctic middle atmosphere during January measured by Doppler lidar. Atmos Chem Phys 17(21):13345–13359
Article
Google Scholar
Hocking WK (2001) Middle atmosphere dynamical studies at Resolute Bay over a full representative year: Mman winds, tides, and special oscillations. Radio Sci 36(6):1795–1822
Article
Google Scholar
Hocking WK (2005) A new approach to momentum flux determinations using SKiYMET meteor radars. Annales Geophysicae 23(7):2433–2439
Article
Google Scholar
Hocking W, Fuller B, Vandepeer B (2001) Real-time determination of meteor-related parameters utilizing modern digital technology. J Atmos Solar Terr Phys 63(2–3):155–169
Article
Google Scholar
Holdsworth DA, Reid IM, Cervera MA (2004) Buckland Park all-sky interferometric meteor radar. Radio Sci 39(5)
Holton JR (1983) The influence of gravity wave breaking on the general circulation of the middle atmosphere. J Atmos Sci 40(10):2497–2507
Article
Google Scholar
Jones J, Webster AR, Hocking WK (1998) An improved interferometer design for use with meteor radars. Radio Sci 33(1):55–65
Article
Google Scholar
Kaifler N, Kaifler B, Ehard B, Gisinger S, Dörnbrack A, Rapp M, Kivi R, Kozlovsky A, Lester M, Liley B (2017) Observational indications of downward-propagating gravity waves in middle atmosphere lidar data. J Atmos Solar Terr Phys 162:16–27
Article
Google Scholar
Khintchine A (1934) Korrelationstheorie der stationären stochastischen Prozesse. Mathematische Annalen 109(1):604–615
Article
Google Scholar
Kim, Y., Eckermann, S. D., and Chun, H. (2003). An overview of the past, present and future of gravity–wave drag parametrization for numerical climate and weather prediction models. Atmos Ocean 41(1)
Kogure M, Nakamura T, Ejiri MK, Nishiyama T, Tomikawa Y, Tsutsumi M (2018) Effects of horizontal wind structure on a gravity wave event in the middle atmosphere over Syowa (69\({}^\circ\)S, 40\({}^\circ\)E), the Antarctic. Geophys Res Lett 45(10):5151–5157
Article
Google Scholar
Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C R Acad Sci URSS 30:301–305
Google Scholar
Larsen MF, Fukao S, Aruga O, Yamanaka MD, Tsuda T, Kato S (1991) A comparison of VHF radar vertical-velocity measurements by a direct vertical-beam method and by a VAD technique. J Atmos Ocean Technol 8(6):766–776
Article
Google Scholar
Larsen, M. F. and Meriwether, J. W. (2012). Vertical winds in the thermosphere. J Geophys Res Space Phys 117(A9)
Lima L, Batista P, Takahashi H, Clemesha B (2004) Quasi-two-day wave observed by meteor radar at 22.7\({}^\circ\)S. J Atmos Solar Terr Phys 66(6–9):529–537
Article
Google Scholar
Lindzen RS (1981) Turbulence and stress owing to gravity wave and tidal breakdown. J Geophys Res Oceans 86(C10):9707–9714
Article
Google Scholar
Liu HL (2019) Quantifying gravity wave forcing using scale invariance. Nat Commun 10(1):1–12
Google Scholar
Liu H-L, McInerney JM, Santos S, Lauritzen PH, Taylor MA, Pedatella NM (2014) Gravity waves simulated by high-resolution whole atmosphere community climate model. Geophys Res Lett 41(24):9106–9112
Article
Google Scholar
Lu X, Chu X, Li H, Chen C, Smith JA, Vadas SL (2017) Statistical characterization of high-to-medium frequency mesoscale gravity waves by lidar-measured vertical winds and temperatures in the MLT. J Atmos Solar Terr Phys 162:3–15
Article
Google Scholar
Manning L, Villard O, Peterson A (1950) Statistical characterization of high-to-medium frequency mesoscale gravity waves by lidar-measured vertical winds and temperatures in the MLT. Proc IRE 38(8):877–883
Article
Google Scholar
Manson AH, Meek CE, Hall C, Hocking WK, MacDougall J, Franke S, Igarashi K, Riggin D, Fritts DC, Vincent RA (1999) Gravity wave spectra, directions and wave interactions: global MLT-MFR network. Earth, Planets and Space 51(7–8):543–562. https://doi.org/10.1186/BF03353214.pdf
Article
Google Scholar
Marino R, Mininni PD, Rosenberg D, Pouquet A (2013) Inverse cascades in rotating stratified turbulence: fast growth of large scales. EPL Europhys Lett 102(4):44006
Article
Google Scholar
Marino R, Mininni PD, Rosenberg DL, Pouquet A (2014) Large-scale anisotropy in stably stratified rotating flows. Phys Rev E 90(2):023018
Article
Google Scholar
Marino R, Pouquet A, Rosenberg D (2015a) Resolving the paradox of oceanic large-scale balance and small-scale mixing. Phys Revi Lett 114(11):114504
Article
Google Scholar
Marino R, Rosenberg D, Herbert C, Pouquet A (2015b) Interplay of waves and eddies in rotating stratified turbulence and the link with kinetic-potential energy partition. EPL Europhys Lett 112(4):49001
Article
Google Scholar
McLandress C (1998) On the importance of gravity waves in the middle atmosphere and their parameterization in general circulation models. J Atmosp Solar Terr Phys 60(14):1357–1383
Article
Google Scholar
Medeiros AF (2003) An investigation of gravity wave activity in the low-latitude upper mesosphere: propagation direction and wind filtering. J Geophys Res 108(D14):4411
Article
Google Scholar
Meriwether J, Faivre M, Fesen C, Sherwood P, Veliz O (2008) New results on equatorial thermospheric winds and the midnight temperature maximum. Annales Geophysicae 26(3):447–466
Article
Google Scholar
Murphy DJ, Alexander SP, Klekociuk AR, Love PT, Vincent RA (2014) Radiosonde observations of gravity waves in the lower stratosphere over Davis, Antarctica. J Geophys Res Atmos 119(21):973
Article
Google Scholar
Nakamura T, Tsuda T, Fukao S, Kato S, Vincent RA (1993) Comparison of the mesospheric gravity waves observed with the MU Radar (35\({}^\circ\)N) and the Adelaide MF Radar (35\({}^\circ\)S). Geophys Res Lett 20(9):803–806
Article
Google Scholar
Nappo CJ (2012) International Geophysics, Volume 102 : Introduction to Atmospheric Gravity Waves (2nd Edition). Academic Press, Saint Louis, MO, USA
Placke M, Hoffmann P, Becker E, Jacobi C, Singer W, Rapp M (2011a) Gravity wave momentum fluxes in the MLT-Part II: Meteor radar investigations at high and midlatitudes in comparison with modeling studies. J Atmos Solar Terr Phys 73(9):911–920
Article
Google Scholar
Placke M, Stober G, Jacobi C (2011b) Gravity wave momentum fluxes in the MLT-Part I: Seasonal variation at Collm (51.3\({}^\circ\)N, 13.0\({}^\circ\)E). J Atmos Solar Terr Phys 73(9):904–910
Article
Google Scholar
Placke M, Hoffmann P, Latteck R, Rapp M (2015) Gravity wave momentum fluxes from MF and meteor radar measurements in the polar MLT region. J Geophys Res Space Phys 120(1):736–750
Article
Google Scholar
Plougonven R, Zhang F (2014) Internal gravity waves from atmospheric jets and fronts. Rev Geophys 52(1):33–76
Article
Google Scholar
Pouquet A, Marino R, Mininni PD, Rosenberg D (2017) Dual constant-flux energy cascades to both large scales and small scales. Phys Fluids 29(11)
Pouquet A, Rosenberg D, Stawarz JE, Marino R (2019) HHelicity dynamics, inverse, and bidirectional cascades in fluid and magnetohydrodynamic turbulence: a brief review. Earth Space Sci 6(3):351–369
Article
Google Scholar
Reid IM (1990) Radar observtions of stratified layers in the mesosphere and lower thermosphere (50–100 km). Advances in Space Research 10(10):7–19
Article
Google Scholar
Reid IM, McIntosh DL, Murphy DJ, Vincent RA (2018) Mesospheric radar wind comparisons at high and middle southern latitudes. Earth, Planets and Space 70(1):84. https://doi.org/10.1186/s40623-018-0861-1
Article
Google Scholar
Rosenberg D, Pouquet A, Marino R, Mininni PD (2015) Evidence for Bolgiano-Obukhov scaling in rotating stratified turbulence using high-resolution direct numerical simulations. Phys Fluids 27(5):055105
Article
Google Scholar
Sato K, Yoshiki M (2008) Gravity wave generation around the polar vortex in the stratosphere revealed by 3-hourly radiosonde observations at Syowa Station. J Atmos Sci 65(12):3719–3735
Article
Google Scholar
Sato K, Kohma M, Tsutsumi M, Sato T (2017) Frequency spectra and vertical profiles of wind fluctuations in the summer Antarctic mesosphere revealed by MST radar observations. J Geophys Res Atmos 122(1):3–19
Article
Google Scholar
Senft DC, Gardner CS (1991) Seasonal variability of gravity wave activity and spectra in the mesopause region at Urbana. J Geophys Res 96(D9):17229
Article
Google Scholar
Spargo AJ, Reid IM, MacKinnon AD (2019) Multistatic meteor radar observations of gravity-wave-tidal interaction over southern Australia. Atmos Meas Tech 12(9):4791–4812
Article
Google Scholar
Stober G, Chau JL (2015) A multistatic and multifrequency novel approach for specular meteor radars to improve wind measurements in the MLT region. Radio Sci 50(5):431–442
Article
Google Scholar
Strelnikova I, Baumgarten G, Lübken F-J (2020) Advanced hodograph-based analysis technique to derive gravity-wave parameters from lidar observations. Atmospheric Measurement Techniques 13(2):479–499
Article
Google Scholar
Suresh Babu V, Ramkumar G, Rachel John S (2012) Seasonal variation of planetary wave momentum flux and the forcing towards mean flow acceleration in the MLT region. J Atmos Solar Terr Phys 78–79:53–61
Article
Google Scholar
Swenson GR, Mende SB (1994) OH emission and gravity waves (including a breaking wave) in all-sky imagery from Bear Lake, UT. Geophys Res Lett 21(20):2239–2242
Article
Google Scholar
Taylor MJ, Pautet P, Fritts DC, Kaifler B, Smith SM, Zhao Y, Criddle NR, McLaughlin P, Pendleton WR, McCarthy MP, Hernandez G, Eckermann SD, Doyle J, Rapp M, Liley B, Russell JM (2019) Large-amplitude mountain waves in the mesosphere observed on 21 June 2014 during DEEPWAVE: 1. Wave development, scales, momentum fluxes, and environmental sensitivity. J Geophys Res Atmos 124(19):10364–10384
Article
Google Scholar
Thorsen D, Franke SJ, Kudeki E (1997) A new approach to MF radar interferometry for estimating mean winds and momentum flux. Radio Sci 32(2):707–726
Article
Google Scholar
Tsutsumi M, Sato K, Sato T, Kohma M, Nakamura T, Nishimura K, Tomikawa Y (2017) haracteristics of mesosphere echoes over Antarctica obtained Using PANSY and MF radars. SOLA 13A(Special-Edition):19–23
Article
Google Scholar
Urco JM, Chau JL, Milla MA, Vierinen JP, Weber T (2018) Coherent MIMO to improve aperture synthesis radar imaging of field-aligned irregularities: first results at Jicamarca. IEEE Trans Geosci Remote Sens 56(5):2980–2990
Article
Google Scholar
Urco JM, Chau JL, Weber T, Vierinen JP, Volz R (2019) Sparse signal recovery in MIMO specular meteor radars with waveform diversity. IEEE Trans Geosci Remote Sens 57(12):10088–10098
Article
Google Scholar
Vadas SL, Becker E (2018) Numerical modeling of the excitation, propagation, and dissipation of primary and secondary gravity waves during wintertime at McMurdo Station in the Antarctic. J Geophys Res Atmos 123(17):9326–9369
Article
Google Scholar
Vadas SL, Zhao J, Chu X, Becker E (2018) The excitation of secondary gravity waves from local body forces: theory and observation. J Geophys Res Atmos 123(17):9296–9325
Article
Google Scholar
Vargas F, Swenson G, Liu A, Gobbi D (2007) O(1 S), OH, and O 2 (b) airglow layer perturbations due to AGWs and their implied effects on the atmosphere. J Geophys Res 112(D14):D14102
Article
Google Scholar
Vargas F, Swenson G, Liu A, Pautet D (2016) Evidence of the excitation of a ring-like gravity wave in the mesosphere over the Andes Lidar Observatory. J Geophys Res Atmos 121(15):8896–8912
Article
Google Scholar
Vargas F, Yang G, Batista P, Gobbi D (2019) Growth rate of gravity wave amplitudes observed in sodium lidar density profiles and nightglow image data. Atmosphere 10(12):750
Article
Google Scholar
Vargas F, Chau JL, Charuvil Asokan H, Gerding M (2021) Mesospheric gravity wave activity estimated via airglow imagery, multistatic meteor radar, and SABER data taken during the SIMONe-2018 campaign. Atmos Chem Phys 21(17):13631–13654
Article
Google Scholar
Vierinen J, Chau JL, Charuvil Asokan H, Urco JM, Clahsen M, Avsarkisov V, Marino R, Volz R (2019) Observing mesospheric turbulence with specular meteor radars: a novel method for estimating second-order statistics of wind velocity. Earth Space Sci 6(7):1171–1195
Article
Google Scholar
Vierinen J, Chau JL, Pfeffer N, Clahsen M, Stober G (2016) Coded continuous wave meteor radar. Atmos Meas Techn 9(2):829–839
Article
Google Scholar
Vincent RA, Joan Alexander M (2000) Gravity waves in the tropical lower stratosphere: an observational study of seasonal and interannual variability. J Geophys Res Atmos 105(D14):17971–17982
Article
Google Scholar
Vincent RA, Reid IM (1983) HF Doppler measurements of mesospheric gravity wave momentum fluxes. J Atmos Sci 40(5):1321–1333
Article
Google Scholar
Waldteufel P, Corbin H (1979) On the analysis of single-Doppler radar data. J Appl Meteorol 18(4):532–542
Article
Google Scholar
Weinstock J (1996) Spectra and a global source of gravity waves for the middle atmosphere. Adv Space Res 17(11):67–76
Article
Google Scholar
Wiener N (1930) Generalized harmonic analysis. Acta Mathematica 55(1):117–258
Article
Google Scholar
Wüst S, Offenwanger T, Schmidt C, Bittner M, Jacobi C, Stober G, Yee JH, Mlynczak MG, Russell III JM (2017) Derivation of horizontal and vertical wavelengths using a scanning OH(3-1) airglow spectrometer. Atmos Meas Tech. Discussions, pages 1–26
Yasui R, Sato K, Tsutsumi M (2016) Seasonal and interannual variation of mesospheric gravity waves based on MF radar observations over 15 years at Syowa Station in the Antarctic. SOLA 12:46–50
Article
Google Scholar
Yiğit E, Medvedev AS (2015) Internal wave coupling processes in Earth’s atmosphere. Adv Space Res 55(4):983–1003
Article
Google Scholar
Younger JP, Reid IM (2017) Interferometer angle-of-arrival determination using precalculated phases. Radio Sci 52(9):1058–1066
Article
Google Scholar
Younger JP, Reid IM, Vincent RA, Murphy DJ (2015) A method for estimating the height of a mesospheric density level using meteor radar. Geophys Res Lett 42(14):6106–6111
Article
Google Scholar
Zhou QH (2000) Incoherent scatter radar measurement of vertical winds in the mesosphere. Geophys Res Lett 27(12):1803–1806
Article
Google Scholar