Agata R, Barbot SD, Fujita K, Hyodo M, Iinuma T, Nakata R, Ichimura T, Hori T (2019) Rapid mantle flow with power-law creep explains deformation after the 2011 Tohoku mega-quake. Nat Commun 10(1):1385
Google Scholar
Andrade ENdC (1910) On the viscous flow in metals, and allied phenomena. Proc R Soc Lond Ser A Contain Papers Math Phys Character 84(567):1–12
Google Scholar
Andrews D (1978) Coupling of energy between tectonic processes and earthquakes. J Geophys Res Solid Earth 83(B5):2259–2264
Google Scholar
Ashby MF (1972) A first report on deformation-mechanism maps. Acta Metall 20(7):887–897
Google Scholar
Ashby M, Duval P (1985) The creep of polycrystalline ice. Cold Reg Sci Technol 11(3):285–300
Google Scholar
Barbot S (2018) Asthenosphere flow modulated by megathrust earthquake cycles. Geophys Res Lett 45(12):6018–6031
Google Scholar
Barbot S (2020) Frictional and structural controls of seismic super-cycles at the Japan trench. Earth Planets Space 72:63. https://doi.org/10.1186/s40623-020-01185-3
Article
Google Scholar
Barbot S, Fialko Y (2010) A unified continuum representation of post-seismic relaxation mechanisms: semi-analytic models of afterslip, poroelastic rebound and viscoelastic flow. Geophys J Int 182(3):1124–1140
Google Scholar
Bollinger C, Marquardt K, Ferreira F (2019) Intragranular plasticity vs. grain boundary sliding (GBS) in forsterite: microstructural evidence at high pressures (3.5–5.0 GPa). Am Miner J Earth Planet Mater 104(2):220–231
Google Scholar
Bürgmann R, Dresen G (2008) Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Ann Rev Earth Plan Sci 36:531–567
Google Scholar
Carter NL, Avé Lallemant HG (1970) High temperature flow of dunite and peridotite. Geol Soc Am Bull 81(8):2181–2202
Google Scholar
Casella G, George EI (1992) Explaining the Gibbs sampler. Am Stat 46(3):167–174
Google Scholar
Chinh NQ, Horváth G, Horita Z, Langdon TG (2004) A new constitutive relationship for the homogeneous deformation of metals over a wide range of strain. Acta Mater 52(12):3555–3563
Google Scholar
Chopra P (1986) The plasticity of some fine-grained aggregates of olivine at high pressure and temperature. Geophys Monogr Am Geophys Union 36:25–33
Google Scholar
Chopra P (1997) High-temperature transient creep in olivine rocks. Tectonophysics 279(104):93–111
Google Scholar
Chopra P, Paterson M (1981) The experimental deformation of dunite. Tectonophysics 78(1–4):453–473
Google Scholar
Chopra P, Paterson M (1984) The role of water in the deformation of dunite. Journal of Geophysical Research: Solid Earth 89(B9):7861–7876
Google Scholar
Cooper RF, Stone DS, Plookphol T (2016) Load relaxation of olivine single crystals. J Geophys Res Solid Earth 121(10):7193–7210
Google Scholar
Demouchy S, Tommasi A, Ballaran TB, Cordier P (2013) Low strength of earth’s uppermost mantle inferred from tri-axial deformation experiments on dry olivine crystals. Phys Earth Planet Inter 220:37–49
Google Scholar
Fei H, Wiedenbeck M, Yamazaki D, Katsura T (2013) Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients. Nature 498:213–215
Google Scholar
Freed AM, Bürgmann R (2004) Evidence of power-law flow in the Mojave desert mantle. Nature 430:548–551
Google Scholar
Freed AM, Herring T, Bürgmann R (2010) Steady-state laboratory flow laws alone fail to explain postseismic observations. Earth Plan Sci Lett 300:1–10
Google Scholar
Geman S, Geman D (1984) Stochastic relaxation. Gibbs distributions, and the Bayesian restoration of images. IEEE Trans pattern Anal Mach Intell 6:721–741
Google Scholar
Hang Y, Barbot S, Dauwels J, Wang T, Nanjundiah P, Qiu Q (2020) Outlier-Insensitive Bayesian Inference for linear inverse problems (OutIBI) with applications to space geodetic data. Geophys J Int 221(1):334–350
Google Scholar
Hansen LN, Kumamoto KM, Thom CA, Wallis D, Durham WB, Goldsby DL, Breithaupt T, Meyers CD, Kohlstedt DL (2019) Low-temperature plasticity in olivine: grain size, strain hardening, and the strength of the lithosphere. J Geophys Res Solid Earth 124(6):5427–5449
Google Scholar
Hansen LN, Wallis D, Breithaupt T, Thom CA, Kempton I (2020) Dislocation creep of olivine: backstress evolution controls transient creep at high temperatures. J Geophys Res Solid Earth 126(5):e2020JB02132e2020JB021325
Google Scholar
Hansen L, Zimmerman ME, Kohlstedt DL (2011) Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic-preferred orientation. J Geophys Res Solid Earth 116(B8)
Hanson DR, Spetzler HA (1994) Transient creep in natural and synthetic, iron-bearing olivine single crystals: mechanical results and dislocation microstructures. Tectonophysics 235(4):293–315
Google Scholar
Hart EW (1970) A phenomenological theory for plastic deformation of polycrystalline metals. Acta Metall 18(6):599–610
Google Scholar
Herrendörfer R, Van Dinther Y, Gerya T, Dalguer LA (2015) Earthquake supercycle in subduction zones controlled by the width of the seismogenic zone. Nat Geosci 8(6):471–474
Google Scholar
Herrendörfer R, Gerya T, Van Dinther Y (2018) An invariant rate-and state-dependent friction formulation for viscoeastoplastic earthquake cycle simulations. J Geophys Res Solid Earth 123(6):5018–5051
Google Scholar
Hirth G, Kohlstedt DL (1995) Experimental constraints on the dynamics of the partially molten upper mantle: 2. Deformation in the dislocation creep regime. J Geophys Res Solid Earth 100(B8):15441–15449
Google Scholar
Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144(1–2):93–108
Google Scholar
Hirth G, Kohlstedt DL (2003) Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. In: Eiler J (ed) Inside the subduction factory, geophysical monograph, vol 138. American Geophysical Society, Washington, D. C, pp 83–105
Google Scholar
Hoechner A, Sobolev SV, Einarsson I, Wang R (2011) Investigation on afterslip and steady state and transient rheology based on postseismic deformation and geoid change caused by the sumatra 2004 earthquake. Geochem Geophys Geosyst 12(7)
Holtzman B, Chrysochoos A, Daridon L (2018) A thermomechanical framework for analysis of microstructural evolution: application to olivine rocks at high temperature. J Geophys Res Solid Earth 123(10):8474–8507
Google Scholar
Holyoke III CW, Kronenberg AK (2010) Accurate differential stress measurement using the molten salt cell and solid salt assemblies in the Griggs apparatus with applications to strength, piezometers and rheology. Tectonophysics 494(1–2):17–31
Google Scholar
Jain C, Korenaga J, Karato S-I (2019) Global analysis of experimental data on the rheology of olivine aggregates. J Geophys Res Solid Earth 124(1):310–334
Google Scholar
Karato S (1989) Grain growth kinetics in olivine aggregates. Tectonophysics 168(4):255–273
Google Scholar
Karato S (1998) Micro-physics of post glacial rebound. Trans Tech Publications, Zurich, pp 351–364
Google Scholar
Karato S (2008) Deformation of earth materials: an introduction to the rheology of solid earth. Cambridge University Press, Cambridge
Google Scholar
Karato S (2010) The influence of anisotropic diffusion on the high-temperature creep of a polycrystalline aggregate. Phys Earth Planet Inter 183(3):468–472
Google Scholar
Karato S-I (2021) A theory of inter-granular transient dislocation creep: Implications for the geophysical studies on mantle rheology. J Geophys Res Solid Earth. https://doi.org/10.1029/2021JB022763
Article
Google Scholar
Karato S, Jung H (2003) Effects of pressure on high-temperature dislocation creep in olivine. Philos Mag 83:401–414
Google Scholar
Karato S, Wu P (1993) Rheology of the upper mantle: a synthesis. Science 260:771–778
Google Scholar
Karato S, Paterson MS, FitzGerald JD (1986) Rheology of synthetic olivine aggregates: influence of grain size and water. J Geophys Res Solid Earth 91(B8):8151–8176
Google Scholar
Katayama I, Karato S-I (2008) Low-temperature, high-stress deformation of olivine under water-saturated conditions. Phys Earth Planet Inter 168(3–4):125–133
Google Scholar
Kido M, Muto J, Nagahama H (2016) Method for correction of differential stress calculations from experiments using the solid salt assembly in a Griggs-type deformation apparatus. Tectonophysics 672:170–176
Google Scholar
Kohlstedt DL (2006) The role of water in high-temperature rock deformation. Rev Mineral Geochem 62(1):377–396
Google Scholar
Korenaga J, Karato S-I (2008) A new analysis of experimental data on olivine rheology. J Geophys Res Solid Earth 113(B2)
Lambert V, Barbot S (2016) Contribution of viscoelastic flow in earthquake cycles within the lithosphere-asthenosphere system. Geophys Res Lett 43(19):10,142-10,154, 2016GL070345
Google Scholar
Langdon T (1994) A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall Mater 42(7):2437–2443
Google Scholar
Long MD, Silver PG (2009) Shear wave splitting and mantle anisotropy: measurements, interpretations, and new directions. Surv Geophys 30(4–5):407–461. https://doi.org/10.1007/s10712-009-9075-1
Article
Google Scholar
Masuti S, Barbot S, Karato S, Feng L, Banerjee P (2016) Upper-mantle water stratification inferred from observations of the 2012 Indian Ocean earthquake. Nature 538:373–377
Google Scholar
Masuti S, Karato S-I, Girard J, Barbot SD (2019) Anisotropic high-temperature creep in hydrous olivine single crystals and its geodynamic implications. Phys Earth Planet Inter 290:1–9
Google Scholar
Mei S, Kohlstedt DL (2000) Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime. J Geophys Res Solid Earth 105(B9):21457–21469
Google Scholar
Mei S, Kohlstedt DL (2000) Influence of water on plastic deformation of olivine aggregates: 2. Dislocation creep regime. J Geophys Res Solid Earth 105(B9):21471–21481
Google Scholar
Mercier J (1985) Olivine and pyroxene, preferred orientation in deformed metals and rocks: an introduction to modern texture analysis h.-r. wenk, 407–430
Montagner J-P, Tanimoto T (1990) Global anisotropy in the upper mantle inferred from the regionalization of phase velocities. J Geophys Res 95(B4):4797–4819
Google Scholar
Muto J, Moore JDP, Barbot S, Iinuma T, Ohta Y, Iwamori H (2019) Coupled afterslip and transient mantle flow after the 2011 Tohoku earthquake. Sci Adv 5(9):eaaw1164
Google Scholar
Nemat-Nasser S (2004) Plasticity. Cambridge monographs on mechanics. A treatise on finite deformation of heterogeneous inelastic materials. Cambridge University Press
Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous materials, 2nd edn. Elsevier
Google Scholar
Ohuchi T, Kawazoe T, Higo Y, Funakoshi K-I, Suzuki A, Kikegawa T, Irifune T (2015) Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth’s upper mantle. Sci Adv 1(9):e1500,360
Google Scholar
Park Y, Jung H (2015) Deformation microstructures of olivine and pyroxene in mantle xenoliths in Shanwang, eastern China, near the convergent plate margin, and implications for seismic anisotropy. Int Geol Rev 57(5–8):629–649
Google Scholar
Poirier J (1980) Shear localization and shear instability in materials in the ductile field. J Struct Geol 2(1–2):135–142
Google Scholar
Poirier J-P (1985) Creep of crystals: high-temperature deformation processes in metals, ceramics and minerals. Cambridge University Press, Cambridge
Google Scholar
Pollitz FF (2005) Transient rheology of the upper mantle beneath central Alaska inferred from the crustal velocity field following the 2002 Denali earthquake. J Geophys Res Solid Earth 110(B8)
Pollitz FF (2003) Transient rheology of the uppermost mantle beneath the Mojave Desert, California. Earth Planet Sci Lett 215(1–2):89–104
Google Scholar
Post R (1977) High-temperature creep of Mt. Burnet dunite. Tectonophysics 42:75–110
Google Scholar
Qiu Q, Moore JD, Barbot S, Feng L, Hill EM (2018) Transient rheology of the Sumatran mantle wedge revealed by a decade of great earthquakes. Nat Commun 9(1):995
Google Scholar
Raterron P, Amiguet E, Chen J, Li L, Cordier P (2009) Experimental deformation of olivine single crystals at mantle pressures and temperatures. Phys Earth Planet Inter 172(1–2):74–83
Google Scholar
Rollins JC, Barbot S, Avouac J-P (2015) Mechanisms of postseismic deformation following the 2010 El Mayor-Cucapah earthquake. Pure Appl Geophys 54
Rousset B, Barbot S, Avouac JP, Hsu Y-J (2012) Postseismic deformation following the 1999 Chi-Chi earthquake, Taiwan: implication for lower-crust rheology. J Geophys Res 117(B12405):16
Google Scholar
Rozel A, Ricard Y, Bercovici D (2011) A thermodynamically self-consistent damage equation for grain size evolution during dynamic recrystallization. Geophys J Int 184(2):719–728
Google Scholar
Sabadini R, Yuen D, Gasperini P (1985) The effects of transient rheology on the interpretation of lower mantle viscosity. Geophys Res Lett 12(6):361–364
Google Scholar
Sherburn J, Horstemeyer M, Bammann D, Baumgardner J (2011) Application of the Bammann inelasticity internal state variable constitutive model to geological materials. Geophys J Int 184(3):1023–1036
Google Scholar
Shi Q, Barbot S, Wei S, Tapponnier P, Matsuzawa T, Shibazaki B (2020) Structural control and system-level behavior of the seismic cycle at the Nankai Trough. Earth Planets Space 72(1):1–31
Google Scholar
Silver P, Holt W (2002) The mantle flow field beneath western North America. Science 295(5557):1054–1057. https://doi.org/10.1126/science.1066878
Article
Google Scholar
Sobolev SV, Muldashev IA (2017) Modeling seismic cycles of great megathrust earthquakes across the scales with focus at postseismic phase. Geochem Geophys Geosyst 18(12):4387–4408
Google Scholar
Tang C-H, Hsu Y-J, Barbot S, Moore JD, Chang W-L (2019) Lower-crustal rheology and thermal gradient in the Taiwan orogenic belt illuminated by the 1999 Chi-Chi earthquake. Sci Adv 5(2):eaav3287
Google Scholar
Tang C-H, Barbot S, Hsu Y-J, Wu Y-M (2020) Heterogeneous power-law flow with transient creep in southern california following the 2010 el mayor-cucapah earthquake. J Geophys Res Solid Earth 125(9):e2020JB019, 740
Google Scholar
Thieme M, Demouchy S, Mainprice D, Barou F, Cordier P (2018) Stress evolution and associated microstructure during transient creep of olivine at 1000–1200\({}^\circ\) C. Phys Earth Planet Inter 278:34–46
Google Scholar
Van der Wal D, Chopra P, Drury M, Gerald JF (1993) Relationships between dynamically recrystallized grain size and deformation conditions in experimentally deformed olivine rocks. Geophys Res Lett 20(14):1479–1482
Google Scholar
Van Dinther Y, Gerya T, Dalguer L, Mai PM, Morra G, Giardini D (2013) The seismic cycle at subduction thrusts: insights from seismo-thermo-mechanical models. J Geophys Res Solid Earth 118(12):6183–6202
Google Scholar
Voce E (1948) The relationship between stress and strain for homogeneous deformation. J Inst Metals 74:537–562
Google Scholar
von Mises R (1928) Mechanik der plastischen formänderung von kristallen. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 8(3):161–185
Google Scholar
Wallis D et al (2020) Dislocation interactions during low-temperature plasticity of olivine and their impact on the evolution of lithospheric strength. Earth Planet Sci Lett 543:116, 349
Google Scholar
Wallis D, Hansen LN, Wilkinson AJ, Lebensohn RA (2021) Dislocation interactions in olivine control postseismic creep of the upper mantle. Nat Commun 12(1):1–12
Google Scholar
Wang Z, Zhao Y, Kohlstedt DL (2010) Dislocation creep accommodated by grain boundary sliding in dunite. J Earth Sci 21(5):541–554
Google Scholar
Wang K, Hu Y, He J (2012) Deformation cycles of subduction earthquakes in a viscoelastic earth. Nature 484(7394):327
Google Scholar
Weertman J (1968) Dislocation climb theory of steady-state creep. Trans Am Soc Metal 61:681–694
Google Scholar
Weiss J et al (2019) Illuminating subduction zone rheological properties in the wake of a giant earthquake. Sci Adv 5(12):eaax6720
Google Scholar
Yuen DA, Sabadini RC, Gasperini P, Boschi E (1986) On transient rheology and glacial isostasy. J Geophys Res Solid Earth 91(B11):11420–11438
Google Scholar