Agnew DC, Larson KM (2007) Finding the repeat times of the GPS constellation. GPS Solut 11:71–76. https://doi.org/10.1007/s10291-006-0038-4

Article
Google Scholar

Altamimi Z, Rebishung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res Solid Earth 121:6109–6131. https://doi.org/10.1002/2016JB013098

Article
Google Scholar

Atkins C, Ziebart M (2016) Effectiveness of observation-domain sidereal filtering for GPS precise point positioning. GPS Solut 20:111–122. https://doi.org/10.1007/s10291-015-0473-1

Article
Google Scholar

Blewitt G, Hammond WC, Kreemer C (2018) Harnessing the GPS data explosion for interdisciplinary science. Eos. https://doi.org/10.1029/2018EO104623

Article
Google Scholar

Bock Y, Melgar D (2016) Physical applications of GPS geodesy: a review. Rep Prog Phys 79(10):106801. https://doi.org/10.1088/0034-4885/79/10/106801

Article
Google Scholar

Bock Y, Nikolaidis RM, de Jonge PJ, Bevis M (2000) Instantaneous geodetic positioning at medium distances with the Global Positioning System. J Geophys Res Solid Earth 105(B21):28223–28253. https://doi.org/10.1029/2000JB900268

Article
Google Scholar

Bock Y, Prawirodirdjo L, Melbourne TI (2004) Detection of arbitrarily large dynamic ground motions with a dense high-rate GPS network. Geophys Res Lett 31:L06604. https://doi.org/10.1029/2003GL019150

Article
Google Scholar

Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res Solid Earth 111:B02406. https://doi.org/10.1029/2005JB003629

Article
Google Scholar

Choi K, Bilich A, Larson KM, Axelrad P (2004) Modified sidereal filtering: Implications for high-rate GPS positioning. Geophys Res Lett 31:L22608. https://doi.org/10.1029/2004GL021621

Article
Google Scholar

Dai W, Huang D, Cai C (2014) Multipath mitigation via component analysis methods for GPS dynamic deformation monitoring. GPS Solut 18:417–428. https://doi.org/10.1007/s10291-013-0341-9

Article
Google Scholar

Dong D, Wang M, Chen W, Zeng Z, Song L, Zhang Q et al (2016) Mitigation of multipath effect in GNSS short baseline positioning by the multipath hemispherical map. J Geod 90:255–262. https://doi.org/10.1007/s00190-015-0870-9

Article
Google Scholar

Elósegui P, Davis JL, Jaldehag RTK, Johansson JM, Niell AE, Shapiro II (1995) Geodesy using the Global Positioning System: the effects of signal scattering on estimates of site position. J Geophys Res Solid Earth 100:9921–9934. https://doi.org/10.1029/95JB00868

Article
Google Scholar

Fuhrmann T, Luo X, Knöpfler A, Mayer M (2015) Generating statistically robust multipath stacking maps using congruent cells. GPS Solut 19:83–92. https://doi.org/10.1007/s10291-014-0367-7

Article
Google Scholar

Fuhrmann T, Garthwaite MC, McClusky S (2021) Investigating GNSS multipath effects induced by co-located radar corner reflectors. J Appl Geod 15:207–224. https://doi.org/10.1515/jag-2020-0040

Article
Google Scholar

Galetzka J, Melgar D, Genrich JF, Geng J, Owen S, Lindsey EO et al (2015) Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal. Science 349:1091–1095. https://doi.org/10.1126/science.aac6383

Article
Google Scholar

Geng J, Jiang P, Liu J (2017) Integrating GPS with GLONASS for high-rate seismogeodesy. Geophys Res Lett 44:3139–3146. https://doi.org/10.1002/2017GL072808

Article
Google Scholar

Geng J, Pan Y, Li X, Guo J, Liu J, Chen X et al (2018) Noise characteristics of high-rate multi-GNSS for subdaily crustal deformation monitoring. J Geophys Res Solid Earth 123:1987–2002. https://doi.org/10.1002/2018JB015527

Article
Google Scholar

Genrich JF, Bock Y (1992) Rapid resolution of crustal motion at short ranges with the global positioning system. J Geophys Res Solid Earth 97:3261–3269. https://doi.org/10.1029/91JB02997

Article
Google Scholar

Genrich JF, Bock Y (2006) Instantaneous geodetic positioning with 10–50 Hz GPS measurements: noise characteristics and implications for monitoring networks. J Geophys Res Solid Earth 111:B03403. https://doi.org/10.1029/2005JB003617

Article
Google Scholar

Goldstein P, Snoke A (2005) SAC Availability for the IRIS Community. Incorporated Research Institutions for Seismology Data Management Center Electronic Newsletter. https://ds.iris.edu/ds/newsletter/vol7/no1/193/sac-availability-for-the-iris-community/. Accessed 02 June 2021

Hatanaka Y, Yamagiwa A, Yutsudo T, Miyahara B (2005) Evaluation of precision of routine solutions of GEONET. J Geograph Surv Inst 108:49–56

Google Scholar

Helffrich G, Wookey J, Bastow I (2013) The seismic analysis code. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139547260

Book
Google Scholar

Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences (2020) Semisys 4.1 POTM00DEU, https://semisys.gfz-potsdam.de/semisys/scripts/sites/site_view.php?site_id=1023. Accessed in 31 May 2021

Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences (2021) Semisys 4.1 POTS00DEU, https://semisys.gfz-potsdam.de/semisys/scripts/sites/site_view.php?site_id=1024. Accessed 31 May 2021

Herring TA, Floyd MA, King RW, McClusky SC (2015) GLOBK Reference Manual Global Kalman filter VLBI and GPS analysis program Release 10.6. GAMIT/GLOBK. http://geoweb.mit.edu/gg/GLOBK_Ref.pdf. Accessed 02 Dec 2020

Herring TA, King RW, Floyd MA, McClusky SC (2018a) GAMIT Reference Manual GPS Analysis at MIT Release 10.7. GAMIT/GLOBK. http://geoweb.mit.edu/gg/GAMIT_Ref.pdf. Accessed 02 Dec 2020

Herring TA, King, RW, Floyd MA., McClusky SC (2018b) Introduction to GAMIT/GLOBK Release 10.7. GAMIT/GLOBK. http://geoweb.mit.edu/gg/Intro_GG.pdf. Accessed 02 Dec 2020

International GNSS Service (2021a) IGS Station – GODE00USA, https://www.igs.org/imaps/station.php?id=GODE00USA. Accessed 31 May 2021

International GNSS Service (2021b) IGS Station – GODN00USA, https://www.igs.org/imaps/station.php?id=GODN00USA. Accessed 31 May 2021

International GNSS Service (2021c) IGS Station – TSK200JPN, https://www.igs.org/imaps/station.php?id=TSK200JPN. Accessed in 31 May 2021

International GNSS Service (2021d) IGS Station—TSKB00JPN, https://www.igs.org/imaps/station.php?id=TSKB00JPN. Accessed 31 May 2021

Iwabuchi T, Shoji Y, Shimada S, Nakamura H (2004) Tsukuba GPS dense net campaign observations: comparison of the stacking maps of post-fit phase residuals estimated from three software packages. J Meteo Soc Jpn Ser II 82:315–330. https://doi.org/10.2151/jmsj.2004.315

Article
Google Scholar

Jiang J, Bock Y, Klein E (2021) Coevolving early afterslip and aftershock signatures of a San Andreas fault rupture. Sci Adv 7(15):eabc1606. https://doi.org/10.1126/sciadv.abc1606

Article
Google Scholar

Kato A, Fukuda J, Nakagawa S, Obara K (2016) Foreshock migration preceding the 2016 Mw 7.0 Kumamoto earthquake, Japan. Geophys Res Lett 43:8945–8953. https://doi.org/10.1002/2016GL070079

Article
Google Scholar

Kawamoto S, Ohta Y, Hiyama Y, Todoriki M, Nishimura T, Furuya T et al (2017) REGARD: a new GNSS-based real-time finite fault modeling system for GEONET. J Geophys Res Solid Earth 122:1324–1349. https://doi.org/10.1002/2016JB013485

Article
Google Scholar

Langbein J, Johnson H (1997) Correlated errors in geodetic time series: implications for time-dependent deformation. J Geophys Res Solid Earth 102:591–603. https://doi.org/10.1029/96JB02945

Article
Google Scholar

Larson KM, Bodin P, Gomberg J (2003) Using 1-Hz GPS data to measure deformations caused by the denali fault earthquake. Science 300:1421–1424. https://doi.org/10.1126/science.1084531

Article
Google Scholar

Larson KM, Bilich A, Axelrad P (2007) Improving the precision of high-rate GPS. J Geophys Res Solid Earth 112:B05422. https://doi.org/10.1029/2006JB004367

Article
Google Scholar

Mao A, Harrison CGA, Dixon TH (1999) Noise in GPS coordinate time series. J Geophys Res Solid Earth 104:2797–2816. https://doi.org/10.1029/1998JB900033

Article
Google Scholar

Melgar D, Crowell BW, Melbourne TI, Szeliga W, Santillman M, Scrivner C (2020) Noise characteristics of operational real-time high-rate GNSS positions in a large aperture network. J Geophys Res Solid Earth 125:e2019JB019197. https://doi.org/10.1029/2019JB019197

Article
Google Scholar

Milliner C, Bürgmann R, Inbal A, Wang T, Liang C (2020) Resolving the kinematics and moment release of early afterslip within the first hours following the 2016 Mw 7.1 Kumamoto Earthquake: implications for the shallow slip deficit and frictional behavior of aseismic creep. J Geophys Res Solid Earth 125:8928. https://doi.org/10.1029/2019JB018928

Article
Google Scholar

Miyazaki S, Larson KM (2008) Coseismic and early postseismic slip for the 2003 Tokachi-oki earthquake sequence inferred from GPS data. Geophys Res Lett 35:L04302. https://doi.org/10.1029/2007GL032309

Article
Google Scholar

Miyazaki S, Larson KM, Choi K, Hikima K, Koketsu K, Bodin P et al (2004) Modeling the rupture process of the 2003 September 25 Tokachi-Oki (Hokkaido) earthquake using 1-Hz GPS data. Geophys Res Lett 31:L21603. https://doi.org/10.1029/2004GL021457

Article
Google Scholar

Moore M, Watson C, King M, McClusky S, Tregoning P (2014) Empirical modelling of site-specific errors in continuous GPS data. J Geod 88:887–900. https://doi.org/10.1007/s00190-014-0729-5

Article
Google Scholar

Morikami S, Mitsui Y (2020) Omori-like slow decay (p < 1) of postseismic displacement rates following the 2011 Tohoku megathrust earthquake. Earth Planets Space 72:37. https://doi.org/10.1186/s40623-020-01162-w

Article
Google Scholar

Munekane H (2012) Coseismic and early postseismic slips associated with the 2011 off the Pacific coast of Tohoku Earthquake sequence: EOF analysis of GPS kinematic time series. Earth Planets Space 64:1077–1091. https://doi.org/10.5047/eps.2012.07.009

Article
Google Scholar

Nikolaidis RM, Bock Y, de Jonge PJ, Shearer P, Agnew DC, Van Domselaar M (2001) Seismic wave observations with the Global Positioning System. J Geophys Res Solid Earth 106:21897–21916. https://doi.org/10.1029/2001JB000329

Article
Google Scholar

Nischan T (2016) GFZRNX - RINEX GNSS Data Conversion and Manipulation Toolbox. V. 1.13. GFZ Data Services. doi:https://doi.org/10.5880/GFZ.1.1.2016.002.

Park KD, Nerem R, Schenewerk M, Davis JL (2004) Site-specific multipath characteristics of global IGS and CORS GPS sites. J Geod 77:799–803. https://doi.org/10.1007/s00190-003-0359-9

Article
Google Scholar

Ragheb AE, Clarke PJ, Edwards SJ (2007) GPS sidereal filtering: coordinate- and carrier-phase-level strategies. J Geod 81:325–335. https://doi.org/10.1007/s00190-006-0113-1

Article
Google Scholar

Ramatschi M, Bradke M, Nischan T, Männel B (2019) GNSS data of the global GFZ tracking network. V. 1. GFZ Data Services. doi:https://doi.org/10.5880/GFZ.1.1.2020.001.

Schaffrin B, Bock Y (1988) A unified scheme for processing GPS dual-band phase observations. Bull Geodesique 62:142–160. https://doi.org/10.1007/BF02519222

Article
Google Scholar

Tsang LLH, Vergnolle M, Twardzik C, Sladen A, Nocquet J-M, Rolandone F et al (2019) Imaging rapid early afterslip of the 2016 Pedernales earthquake, Ecuador. Earth Planet Sci Lett 524:115724. https://doi.org/10.1016/j.epsl.2019.115724

Article
Google Scholar

Twardzik C, Vergnolle M, Sladen A, Avallone A (2019) Unravelling the contribution of early postseismic deformation using sub-daily GNSS positioning. Sci Rep 9:1775. https://doi.org/10.1038/s41598-019-39038-z

Article
Google Scholar

Wang K, Hu Y, He J (2012) Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature 484:327–332. https://doi.org/10.1038/nature11032

Article
Google Scholar

Wang M, Wang J, Dong D, Chen W, Li H, Wang Z (2018) advanced sidereal filtering for mitigating multipath effects in GNSS short baseline positioning. ISPRS Int J Geo-Info 7:228. https://doi.org/10.3390/ijgi7060228

Article
Google Scholar

Wdowinski S, Bock Y, Zhang J, Fang P, Genrich J (1997) Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. J Geophys Res Solid Earth 102:18057–18070. https://doi.org/10.1029/97JB01378

Article
Google Scholar

Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013) Generic mapping tools: improved version released. EOS Trans Am Geophys Union 94:409–410. https://doi.org/10.1002/2013EO450001

Article
Google Scholar

Williams S, Bock Y, Fang P (1998) Integrated satellite interferometry: tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products. J Geophys Res Solid Earth 103:27051–27067. https://doi.org/10.1029/98JB02794

Article
Google Scholar

Yan H, Chen W, Zhu Y, Zhang W, Zhong M (2009) Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes. Geophys Res Lett 36:L13301. https://doi.org/10.1029/2009GL038152

Article
Google Scholar

Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J et al (1997) Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocities. J Geophys Res Solid Earth 102:18035–18055. https://doi.org/10.1029/97JB01380

Article
Google Scholar

Zheng K, Zhang X, Li P, Li X, Ge M, Guo F et al (2019) Multipath extraction and mitigation for high-rate multi-GNSS precise point positioning. J Geod 93:2037–2051. https://doi.org/10.1007/s00190-019-01300-7

Article
Google Scholar

Zheng K, Zhang X, Sang J, Zhao Y, Wen G, Guo F (2021) Common-mode error and multipath mitigation for subdaily crustal deformation monitoring with high-rate GPS observations. GPS Solut 25:67. https://doi.org/10.1007/s10291-021-01095-1

Article
Google Scholar