Agata R, Barbot SD, Fujita K, Hyodo M, Iinuma T, Nakata R, Ichimura T, Hori T (2019) Rapid mantle flow with power-law creep explains deformation after the 2011 Tohoku mega-quake. Nat Commun 10(1):1385. https://doi.org/10.1038/s41467-019-08984-7
Article
Google Scholar
Andrews DJ (1976) Rupture propagation with finite stress in antiplane strain. J Geophys Res 81:3575–3582. https://doi.org/10.1029/JB081i020p03575
Article
Google Scholar
Barbot S (2018a) Deformation of a half-space from anelastic strain confined in a tetrahedral volume. Bull Seism Soc Am 108(5A):2687. https://doi.org/10.1785/0120180058
Article
Google Scholar
Barbot S (2018b) Asthenosphere flow modulated by megathrust earthquake cycles. Geophys Res Lett 45:6018–6031. https://doi.org/10.1029/2018GL078197
Article
Google Scholar
Barbot S (2019a) Modulation of fault strength during the seismic cycle by grain-size evolution around contact junctions. Tectonophysics 765:129–145. https://doi.org/10.1016/j.tecto.2019.05.004
Article
Google Scholar
Barbot S (2019b) Slow-slip, slow earthquakes, period-two cycles, full and partial ruptures, and deterministic chaos in a single asperity fault. Tectonophysics. https://doi.org/10.1016/j.tecto.2019.228171
Article
Google Scholar
Barbot S, Fialko Y (2010) A unified continuum representation of postseismic relaxation mechanisms: semi-analytic models of afterslip, poroelastic rebound and viscoelastic flow. Geophys J Int 182(3):1124–1140. https://doi.org/10.1111/j.1365-246X.2010.04678.x
Article
Google Scholar
Barbot S, Moore JD, Lambert V (2017) Displacement and stress associated with distributed anelastic deformation in a half-space. Bull Seism Soc Am 107(2):821–855. https://doi.org/10.1785/0120160237
Article
Google Scholar
Bassett D, Sandwell DT, Fialko Y, Watts AB (2016) Upper-plate controls on co-seismic slip in the 2011 magnitude 9.0 Tohoku-Oki earthquake. Nature 531(7592):92. https://doi.org/10.1038/nature16945
Article
Google Scholar
Bilek SL, Lay T (2002) Tsunami earthquakes possibly widespread manifestations of frictional conditional stability. Geophys Res Lett 29(1673):4. https://doi.org/10.1029/2002GL015215
Article
Google Scholar
Blanpied ML, Lockner DA, Byerlee JD (1991) Fault stability inferred from granite sliding experiments at hydrothermal conditions. Geophys Res Lett 18(4):609–612. https://doi.org/10.1029/91GL00469
Article
Google Scholar
Blanpied ML, Lockner DA, Byerlee JD (1995) Frictional slip of granite at hydrothermal conditions. J Geophys Res 100(B7):13045–13064. https://doi.org/10.1029/95JB00862
Article
Google Scholar
Blanpied M, Marone C, Lockner D, Byerlee J, King D (1998) Quantitative measure of the variation in fault rheology due to fluid-rock interactions. J Geophys Res 103(B5):9691–9712. https://doi.org/10.1029/98JB00162
Article
Google Scholar
Bletery Q, Sladen A, Delouis B, Vallée M, Nocquet JM, Rolland L, Jiang J (2014) A detailed source model for the mw9.0 Tohoku-Oki earthquake reconciling geodesy, seismology, and tsunami records. J Geophys Res 119(10):7636–7653
Article
Google Scholar
Boettcher MS, Hirth G, Evans B (2007) Olivine friction at the base of oceanic seismogenic zones. J Geophys Res 112(B1):13. https://doi.org/10.1029/2006JB004301
Article
Google Scholar
Boston B, Moore GF, Nakamura Y, Kodaira S (2017) Forearc slope deformation above the Japan Trench megathrust: implications for subduction erosion. Earth Planet Sci Lett 462:26–34. https://doi.org/10.1016/j.epsl.2017.01.005
Article
Google Scholar
Brantut N, Passelègue FX, Deldicque D, Rouzaud J-N, Schubnel A (2016) Dynamic weakening and amorphization in serpentinite during laboratory earthquakes. Geology 44(8):607–610. https://doi.org/10.1130/G37932.1
Article
Google Scholar
Bürgmann R, Dresen G (2008) Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Ann Rev Earth Plan Sci 36:531–567. https://doi.org/10.1146/annurev.earth.36.031207.124326
Article
Google Scholar
Carpenter B, Saffer D, Marone C (2015) Frictional properties of the active san andreas fault at safod: implications for fault strength and slip behavior. J Geophys Res 120(7):5273–5289. https://doi.org/10.1002/2015JB011963
Article
Google Scholar
Cattania C (2019) Complex earthquake sequences on simple faults. Res Lett Geophys 46(17–18):10384–10393. https://doi.org/10.1029/2019GL083628
Article
Google Scholar
Cattania C, Segall P (2019) Crack models of repeating earthquakes predict observed moment-recurrence scaling. J Geophys Res 124(1):476–503. https://doi.org/10.1029/2018JB016056
Article
Google Scholar
Chen J, Verberne BA, Spiers CJ (2015) Effects of healing on the seismogenic potential of carbonate fault rocks: experiments on samples from the Longmenshan fault, Sichuan, China. J Geophys Res Solid Earth 120(8):5479–5506. https://doi.org/10.1002/2015JB012051
Article
Google Scholar
Chester FM (1995) A rheologic model for wet crust applied to strike-slip faults. J Geophys Res 100(B7):13033–13044
Article
Google Scholar
Cubas N, Lapusta N, Avouac J-P, Perfettini H (2015) Numerical modeling of long-term earthquake sequences on the ne japan megathrust: comparison with observations and implications for fault friction. Earth Planet Sci Lett 419:187–198. https://doi.org/10.1016/j.epsl.2015.03.002
Article
Google Scholar
DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181(1):1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x
Article
Google Scholar
Dieterich JH (1992) Earthquake nucleation on faults with rate- and state-dependent strength. Tectonophysics 211:115–134. https://doi.org/10.1016/0040-1951(92)90055-B
Article
Google Scholar
Dieterich J (1994) A constitutive law for rate of earthquake production and its application to earthquake clustering. J Geophys Res 99(B2):2601–2618. https://doi.org/10.1029/93JB02581
Article
Google Scholar
Dieterich JH, Kilgore BD (1994) Direct observation of frictional contacts: new insights for sliding memory effects. Pure Appl Geophys 143:283–302. https://doi.org/10.1007/BF00874332
Article
Google Scholar
Dieterich JH, Kilgore BD (1996) Imaging surface contacts: power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic. Tectonophysics 256(1–4):219–239. https://doi.org/10.1016/0040-1951(95)00165-4
Article
Google Scholar
Erickson B et al (2020) The community code verification exercise for simulating sequences of earthquakes and aseismic slip (SEAS). Res Lett Seism. https://doi.org/10.1785/0220190248
Article
Google Scholar
Feng W et al (2017) Source characteristics of the 2015 Mw 7.8 Gorkha (Nepal) earthquake and its Mw 7.2 aftershock from space geodesy. Tectonophysics 712:747–758. https://doi.org/10.1016/j.tecto.2016.02.029
Article
Google Scholar
Feng L, Barbot S, Hill EM, Hermawan I, Banerjee P, Natawidjaja DH (2016) Footprints of past earthquakes revealed in the afterslip of the 2010 Mw 7.8 Mentawai tsunami earthquake. Geophys Res Lett 43(18):9518–9526. https://doi.org/10.1002/2016GL069870
Article
Google Scholar
Freed AM, Hashima A, Becker TW, Okaya DA, Sato H, Hatanaka Y (2017) Resolving depth-dependent subduction zone viscosity and afterslip from postseismic displacements following the 2011 Tohoku-oki, Japan earthquake. Earth Planet Sci Lett 459:279–290. https://doi.org/10.1016/j.epsl.2016.11.040
Article
Google Scholar
Fujiwara T, Kodaira S, No T, Kaiho Y, Takahashi N, Kaneda Y (2011) The 2011 Tohoku-Oki earthquake: displacement reaching the trench axis. Science 334(6060):1240–1240. https://doi.org/10.1126/science.1211554
Article
Google Scholar
Fujiwara T, dos Santos Ferreira C, Bachmann AK, Strasser M, Wefer G, Sun T, Kanamatsu T, Kodaira S (2017) Seafloor displacement after the 2011 Tohoku-oki earthquake in the Northern Japan trench examined by repeated bathymetric surveys. Geophys Res Lett 44(23):11–833. https://doi.org/10.1002/2017GL075839
Article
Google Scholar
Gao X, Wang K (2017) Rheological separation of the megathrust seismogenic zone and episodic tremor and slip. Nature 543(7645):416–419. https://doi.org/10.1038/nature21389
Article
Google Scholar
Geersen J (2019) Sediment-starved trenches and rough subducting plates are conducive to tsunami earthquakes. Tectonophysics 762:28–44. https://doi.org/10.1016/j.tecto.2019.04.024
Article
Google Scholar
Goldfinger C, Nelson CH, Johnson JE (2003a) Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas fault systems. Ann Geophys 46(5):1169–1194. https://doi.org/10.4401/ag-3452
Article
Google Scholar
Goldfinger C, Nelson CH, Johnson JE, Shipboard Scientific Party (2003b) Holocene earthquake records from the Cascadia subduction zone and northern San Andreas Fault based on precise dating of offshore turbidites. Ann Rev Earth Planet Sci 31(1):555–577
Article
Google Scholar
Goswami A, Barbot S (2018) Slow-slip events in semi-brittle serpentinite fault zones. Sci Rep 8(1):6181. https://doi.org/10.1038/s41598-018-24637-z
Article
Google Scholar
Hasegawa A, Nakajima J, Umino N, Miura S (2005) Deep structure of the northeastern Japan arc and its implications for crustal deformation and shallow seismic activity. Tectonophysics 403(1–4):59–75. https://doi.org/10.1016/j.tecto.2005.03.018
Article
Google Scholar
Hayes GP, Moore GL, Portner DE, Hearne M, Flamme H, Furtney M, Smoczyk GM (2018) Slab2, a comprehensive subduction zone geometry model. Science 362(6410):58–61. https://doi.org/10.1126/science.aat4723
Article
Google Scholar
Herrendörfer R, Van Dinther Y, Gerya T, Dalguer LA (2015) Earthquake supercycle in subduction zones controlled by the width of the seismogenic zone. Nat Geosci 8(6):471–474. https://doi.org/10.1038/ngeo2427
Article
Google Scholar
Hirose H, Asano Y, Obara K, Kimura T, Matsuzawa T, Tanaka S, Maeda T (2010) Slow earthquakes linked along dip in the Nankai subduction zone. Science 330(6010):1502–1502. https://doi.org/10.1126/science.1197102
Article
Google Scholar
Hirth G, Kohlstedt DL (2003) Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. In: Eiler J (ed) Inside the Subduction Factory, vol 138. Geophysical monograph. Washington D. C., American Geophysical Union, pp 83–105. https://doi.org/10.1029/138GM06
Chapter
Google Scholar
Hori T, Miyazaki S (2011) A possible mechanism of M 9 earthquake generation cycles in the area of repeating M 7\(\sim\)8 earthquakes surrounded by aseismic sliding. Earth Planets Space 63(7):48. https://doi.org/10.5047/eps.2011.06.022
Article
Google Scholar
Horowitz FG, Ruina A (1989) Slip patterns in a spatially homogeneous fault model. J Geophys Res 94(B8):10279–10298. https://doi.org/10.1029/JB094iB08p10279
Article
Google Scholar
Howard LN (1966) Convection at high rayleigh number. In: Görtler H (ed) Applied mechanics. Springer, Berlin Heidelberg, pp 1109–1115. https://doi.org/10.1007/978-3-662-29364-5_147
Chapter
Google Scholar
Hu Y, Bürgmann R, Freymueller JT, Banerjee P, Wang K (2014) Contributions of poroelastic rebound and a weak volcanic arc to the postseismic deformation of the 2011 Tohoku earthquake. Earth Planets Space 66(1):106. https://doi.org/10.1186/1880-5981-66-106
Article
Google Scholar
Hu Y, Bürgmann R, Uchida N, Banerjee P, Freymueller JT (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake. J Geophys Res 121(1):385–411. https://doi.org/10.1002/2015JB012508
Article
Google Scholar
Hubbard J, Almeida R, Foster A, Sapkota SN, Bürgi P, Tapponnier P (2016) Structural segmentation controlled the 2015 Mw 7.8 Gorkha earthquake rupture in Nepal. Geology 44(8):639–642. https://doi.org/10.1130/G38077.1
Article
Google Scholar
Igarashi T, Matsuzawa T, Hasegawa A (2003) Repeating earthquakes and interplate aseismic slip in the northeastern Japan subduction zone. J Geophys Res 108:2249. https://doi.org/10.1029/2002JB001920
Article
Google Scholar
Iinuma T et al (2012) Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku earthquake (M9.0) refined by means of seafloor geodetic data. J Geophys Res 117:B7. https://doi.org/10.1029/2012JB009186
Article
Google Scholar
Ikari MJ (2019) Laboratory slow slip events in natural geologic materials. Int Geophys J 218(1):354–387. https://doi.org/10.1093/gji/ggz143
Article
Google Scholar
Ikari MJ, Kopf AJ (2017) Seismic potential of weak, near-surface faults revealed at plate tectonic slip rates. Sci Adv 3(11):e1701269. https://doi.org/10.1126/sciadv.1701269
Article
Google Scholar
Ikari MJ, Saffer DM, Marone C (2009) Frictional and hydrologic properties of clay-rich fault gouge. J Geophys Res. https://doi.org/10.1029/2008JB006089
Article
Google Scholar
Ikari MJ, Niemeijer AR, Spiers CJ, Kopf AJ, Saffer DM (2013) Experimental evidence linking slip instability with seafloor lithology and topography at the Costa Rica convergent margin. Geology 41(8):891–894. https://doi.org/10.1130/G33956.1
Article
Google Scholar
Ito Y et al (2013) Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake. Tectonophysics 600:14–26. https://doi.org/10.1016/j.tecto.2012.08.022.
Article
Google Scholar
Ito A, Fujie G, Miura S, Kodaira S, Kaneda Y, Hino R (2005) Bending of the subducting oceanic plate and its implication for rupture propagation of large interplate earthquakes off Miyagi, Japan, in the Japan Trench subduction zone. Geophys Res Lett. https://doi.org/10.1029/2004GL022307
Article
Google Scholar
Ito Y, Tsuji T, Osada Y, Kido M, Inazu D, Hayashi Y, Tsushima H, Hino R, Fujimoto H (2011) Frontal wedge deformation near the source region of the 2011 Tohoku-oki earthquake. Geophys Res Lett. https://doi.org/10.1029/2011GL048355
Article
Google Scholar
Kanamori H (1972) Mechanism of tsunami earthquakes. Phys Earth Planet Int 6(5):346–359
Article
Google Scholar
Kaneko Y, Avouac J-P, Lapusta N (2010) Towards inferring earthquake patterns from geodetic observations of interseismic coupling. Nat Geosci 3:363–369. https://doi.org/10.1038/ngeo843
Article
Google Scholar
Karato S-I, Jung H (2003) Effects of pressure on high-temperature dislocation creep in olivine. Philos Mag 83(3):401–414. https://doi.org/10.1080/0141861021000025829
Article
Google Scholar
Karato S, Wu P (1993) Rheology of the upper mantle: a synthesis. Science 260:771–778. https://doi.org/10.1126/science.260.5109.771
Article
Google Scholar
Kato N, Yoshida S (2011) A shallow strong patch model for the great Tohoku-oki earthquake: a numerical simulation. Geophys Res Lett 38(7):2011. https://doi.org/10.1029/2011GL048565
Article
Google Scholar
Kawakatsu H, Seno T (1983) Triple seismic zone and the regional variation of seismicity along the northern Honshu arc. J Geophys Res 88(B5):4215–4230. https://doi.org/10.1029/JB088iB05p04215
Article
Google Scholar
Keren TT, Kirkpatrick JD (2016) The damage is done: low fault friction recorded in the damage zone of the shallow Japan Trench décollement. J Geophys Res 121(5):3804–3824. https://doi.org/10.1002/2015JB012311
Article
Google Scholar
Kido M, Osada Y, Fujimoto H, Hino R, Ito Y (2011) Trench-normal variation in observed seafloor displacements associated with the, Tohoku-oki earthquake. Geophys Res Lett 38(24):2011. https://doi.org/10.1029/2011GL050057
Article
Google Scholar
King D, Marone C (2012) Frictional properties of olivine at high temperature with applications to the strength and dynamics of the oceanic lithosphere. J Geophys Res 117:B12. https://doi.org/10.1029/2012JB009511
Article
Google Scholar
Kodaira S, No T, Nakamura Y, Fujiwara T, Kaiho Y, Miura S, Takahashi N, Kaneda Y, Taira A (2012) Coseismic fault rupture at the trench axis during the 2011 Tohoku-oki earthquake. Nat Geosci 5(9):646. https://doi.org/10.1038/ngeo1547
Article
Google Scholar
Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high reynolds number. J Fluid Mech 13(1):82–85. https://doi.org/10.1017/S0022112062000518
Article
Google Scholar
Konca AO et al (2008) Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature 456:631–635. https://doi.org/10.1038/nature07572
Article
Google Scholar
Kozdon JE, Dunham EM (2013) Rupture to the trench: dynamic rupture simulations of the 11 March 2011 Tohoku earthquake. Bull Seism Soc Am 103(2B):1275–1289. https://doi.org/10.1785/0120120136
Article
Google Scholar
Lambert V, Barbot S (2016) Contribution of viscoelastic flow in earthquake cycles within the lithosphere-asthenosphere system. Geophys Res Lett 43(19):142–154. https://doi.org/10.1002/2016GL070345
Article
Google Scholar
Lapusta N, Rice JR (2003) Nucleation and early seismic propagation of small and large events in a crustal earthquake model. J Geophs Res 108(B4):2205. https://doi.org/10.1029/2001JB000793
Article
Google Scholar
Lay T (2018) A review of the rupture characteristics of the 2011 Tohoku-oki Mw 9.1 earthquake. Tectonophysics 733:4–36. https://doi.org/10.1016/j.tecto.2017.09.022
Article
Google Scholar
Li Q, Tullis TE, Goldsby D, Carpick RW (2011) Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480(7376):233. https://doi.org/10.1038/nature10589
Article
Google Scholar
Liu Y, Szlufarska I (2012) Chemical origins of frictional aging. Phys Rev Lett 109(18):186102. https://doi.org/10.1103/PhysRevLett.109.186102
Article
Google Scholar
Liu X, Zhao D (2018) Upper and lower plate controls on the great 2011 Tohoku-oki earthquake. Sci Adv 4(6):eaat4396. https://doi.org/10.1126/sciadv.aat4396
Article
Google Scholar
Liu X, Zhao D, Li S (2014) Seismic attenuation tomography of the Northeast Japan arc: insight into the 2011 Tohoku earthquake (Mw 9.0) and subduction dynamics. J Geophys Res 119(2):1094–1118. https://doi.org/10.1002/2013JB010591
Article
Google Scholar
Lotto GC, Dunham EM, Jeppson TN, Tobin HJ (2017) The effect of compliant prisms on subduction zone earthquakes and tsunamis. Earth Planet Sci Lett 458:213–222. https://doi.org/10.1016/j.epsl.2016.10.050
Article
Google Scholar
Ma S (2012) A self-consistent mechanism for slow dynamic deformation and tsunami generation for earthquakes in the shallow subduction zone. Geophys Res Lett. https://doi.org/10.1029/2012GL051854
Article
Google Scholar
Masuti S, Barbot S, Karato S, Feng L, Banerjee P (2016) Upper mantle water stratification inferred from the 2012 Mw 8.6 Indian Ocean earthquake. Nature 538:373–377. https://doi.org/10.1038/nature19783,2016
Article
Google Scholar
Mencin D et al (2016) Himalayan strain reservoir inferred from limited afterslip following the Gorkha earthquake. Nat Geosci 9(7):533–537. https://doi.org/10.1038/ngeo2734
Article
Google Scholar
Michel S, Avouac J-P, Lapusta N, Jiang J (2017) Pulse-like partial ruptures and high-frequency radiation at creeping-locked transition during megathrust earthquakes. Geophys Res Lett 44(16):8345–8351. https://doi.org/10.1002/2017GL074725
Article
Google Scholar
Mitsui Y, Iio Y, Fukahata Y (2012) A scenario for the generation process of the 2011 Tohoku earthquake based on dynamic rupture simulation: role of stress concentration and thermal fluid pressurization. Earth Planets Space 64(12):12. https://doi.org/10.5047/eps.2012.05.016
Article
Google Scholar
Miura S, Takahashi N, Nakanishi A, Tsuru T, Kodaira S, Kaneda Y (2005) Structural characteristics off Miyagi forearc region, the Japan Trench seismogenic zone, deduced from a wide-angle reflection and refraction study. Tectonophysics 407(3–4):165–188. https://doi.org/10.1016/j.tecto.2005.08.001
Article
Google Scholar
Miura S, Iinuma T, Yui S, Uchida N, Sato T, Tachibana K, Hasegawa A (2006) Co-and post-seismic slip associated with the 2005 Miyagi-oki earthquake (M7.2) as inferred from GPS data. Earth Planets Space 58(12):1567–1572. https://doi.org/10.1186/BF03352662
Article
Google Scholar
Moore JD et al (2017) Imaging the distribution of transient viscosity after the 2016 Mw 7.1 Kumamoto earthquake. Science 356(6334):163–167. https://doi.org/10.1126/science.aal3422
Article
Google Scholar
Murphy S et al (2018) Tsunamigenic earthquake simulations using experimentally derived friction laws. Earth Planet Sci Lett 486:155–165. https://doi.org/10.1016/j.epsl.2018.01.011
Article
Google Scholar
Muto J, Shibazaki B, Ito Y, Iinuma T, Ohzono M, Matsumoto T, Okada T (2013) Two-dimensional viscosity structure of the northeastern Japan islands arc-trench system. Geophys Res Lett 40(17):4604–4608. https://doi.org/10.1002/grl.50906
Article
Google Scholar
Muto J, Shibazaki B, Iinuma T, Ito Y, Ohta Y, Miura S, Nakai Y (2016) Heterogeneous rheology controlled postseismic deformation of the 2011 Tohoku-Oki earthquake. Geophys Res Lett 43(10):4971–4978. https://doi.org/10.1002/2016GL068113
Article
Google Scholar
Muto J, Moore JDP, Barbot S, Iinuma T, Ohta Y, Iwamori H (2019) Coupled afterslip and transient mantle flow after the 2011 Tohoku earthquake. Sci Adv 5(9):eaaw1164. https://doi.org/10.1126/sciadv.aaw1164
Article
Google Scholar
Nakajima J, Matsuzawa T, Hasegawa A, Zhao D (2001) Three-dimensional structure of Vp, Vs, and Vp/Vs beneath northeastern Japan: Implications for arc magmatism and fluids. J Geophys Res 106(B10):21843–21857. https://doi.org/10.1029/2000JB000008
Article
Google Scholar
Nakamura Y, Kodaira S, Miura S, Regalla C, Takahashi N (2013) High-resolution seismic imaging in the Japan trench axis area off Miyagi, northeastern Japan. Geophys Res Lett 40(9):1713–1718. https://doi.org/10.1002/grl.50364
Article
Google Scholar
Nakano M, Hori T, Araki E, Kodaira S, Ide S (2018) Shallow very-low-frequency earthquakes accompany slow slip events in the Nankai subduction zone. Nat Commun 9(1):984. https://doi.org/10.1038/s41467-018-03431-5
Article
Google Scholar
Nakata R, Hori T, Hyodo M, Ariyoshi K (2016) Possible scenarios for occurrence of M\(\sim\)7 interplate earthquakes prior to and following the 2011 Tohoku-Oki earthquake based on numerical simulation. Sci Rep 6(25):704. https://doi.org/10.1038/srep25704
Article
Google Scholar
Nishikawa T, Matsuzawa T, Ohta K, Uchida N, Nishimura T, Ide S (2019) The slow earthquake spectrum in the Japan Trench illuminated by the S-net seafloor observatories. Science 365(6455):808–813. https://doi.org/10.1126/science.aax5618
Article
Google Scholar
Noda H, Lapusta N (2013) Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature 493(7433):518–521. https://doi.org/10.1038/nature11703
Article
Google Scholar
Noda A, Takahama T, Kawasato T, Matsuura M (2018) Interpretation of offshore crustal movements following the 2011 Tohoku-oki earthquake by the combined effect of afterslip and viscoelastic stress relaxation. Pure Appl Geophys 175(2):559–572. https://doi.org/10.1007/s00024-017-1682-z
Article
Google Scholar
Obara K, Kato A (2016) Connecting slow earthquakes to huge earthquakes. Science 353(6296):253–257. https://doi.org/10.1126/science.aaf1512
Article
Google Scholar
Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seism Soc Am 82:1018–1040
Google Scholar
Okada T, Yaginuma T, Umino N, Kono T, Matsuzawa T, Kita S, Hasegawa A (2005) The 2005 m7.2 Miyagi-oki earthquake, NE Japan: possible rerupturing of one of asperities that caused the previous M7.4 earthquake. Geophys Res Lett 32(24):1. https://doi.org/10.1029/2005GL024613
Article
Google Scholar
Okazaki K, Katayama I (2015) Slow stick slip of antigorite serpentinite under hydrothermal conditions as a possible mechanism for slow earthquakes. Geophys Res Lett 42(4):1099–1104. https://doi.org/10.1002/2014GL062735
Article
Google Scholar
Ong M, Qing B, Su S, Hubbard J (2019) Physics-based scenario of earthquake cycles on the Ventura Thrust system, California: the effect of variable friction and fault geometry. Pure Appl Geophys. https://doi.org/10.1007/s00024-019-02111-9
Article
Google Scholar
Ozawa S, Nishimura T, Suito H, Kobayashi T, Tobita M, Imakiire T (2011) Coseismic and postseismic slip of the 2011 magnitude-9 tohoku-oki earthquake. Nature 475(7356):373–376. https://doi.org/10.1038/nature10227
Article
Google Scholar
Patton JR et al (2015) A 6600 year earthquake history in the region of the 2004 Sumatra-Andaman subduction zone earthquake. Geosphere 11(6):2067–2129. https://doi.org/10.1130/GES01066.1
Article
Google Scholar
Philibosian B et al (2017) Earthquake supercycles on the Mentawai segment of the Sunda megathrust in the seventeenth century and earlier. J Geophys Res 122(1):642–676. https://doi.org/10.1002/2016JB013560
Article
Google Scholar
Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, New York, p 994
Google Scholar
Qiu Q et al (2016) The mechanism of partial rupture of a locked megathrust: the role of fault morphology. Geology 44(10):875–878. https://doi.org/10.1130/G38178.1
Article
Google Scholar
Qiu Q, Moore JDP, Barbot S, Feng L, Hill E (2018) Transient viscosity in the Sumatran mantle wedge from a decade of geodetic observations. Nat Commun 9:995. https://doi.org/10.1038/s41467-018-03298-6
Article
Google Scholar
Reinen LA, Weeks JD, Tullis TE (1991) The frictional behavior of serpentinite: implications for aseismic creep on shallow crustal faults. Geophys Res Lett 18(10):1921–1924. https://doi.org/10.1029/91GL02367
Article
Google Scholar
Renard F, Beauprêtre S, Voisin C, Zigone D, Candela T, Dysthe DK, Gratier J-P (2012) Strength evolution of a reactive frictional interface is controlled by the dynamics of contacts and chemical effects. Earth Planet Sci Lett 341:20–34. https://doi.org/10.1016/j.epsl.2012.04.048
Article
Google Scholar
Rice JR (1983) Constitutive relations for fault slip and earthquake instabilities. Pure Appl Geophys 21:443–475. https://doi.org/10.1007/978-3-0348-6608-8_7
Article
Google Scholar
Rice JR (1993) Spatio-temporal complexity of slip on a fault. J Geophys Res 98(B6):9885–9907. https://doi.org/10.1029/93JB00191
Article
Google Scholar
Rice JR, Ruina AL (1983) Stability of steady frictional slipping. J Appl Mech 50:343–349. https://doi.org/10.1115/1.3167042
Article
Google Scholar
Rousset B, Barbot S, Avouac JP, Hsu Y-J (2012) Postseismic deformation following the 1999 Chi-Chi earthquake, Taiwan: implication for lower-crust rheology. J Geophys Res 117(B12405):16. https://doi.org/10.1029/2012JB009571
Article
Google Scholar
Rubin AM, Ampuero J-P (2005) Earthquake nucleation on (aging) rate and state faults. J Geophys Res 110(B11312):24. https://doi.org/10.1029/2005JB003686
Article
Google Scholar
Rubin CM, Horton BP, Sieh K, Pilarczyk JE, Daly P, Ismail N, Parnell AC (2017) Highly variable recurrence of tsunamis in the 7400 years before the 2004 Indian Ocean tsunami. Nat Commun 8(16):019
Google Scholar
Ruina A (1983) Slip instability and state variable friction laws. J Geophys Res 88:10359–10370. https://doi.org/10.1029/JB088iB12p10359
Article
Google Scholar
Saffer DM, Marone C (2003) Comparison of smectite-and illite-rich gouge frictional properties: application to the updip limit of the seismogenic zone along subduction megathrusts. Earth Planet Sci Lett 215(1–2):219–235. https://doi.org/10.1016/S0012-821X(03)00424-2
Article
Google Scholar
Sagiya T, Miyazaki S, Tada T (2000) Continuous GPS array and present-day crustal deformation of Japan. Pure Appl Geophys 157(11–12):2303–2322. https://doi.org/10.1007/PL00022507
Article
Google Scholar
Satake K, Tanioka Y (1999) Sources of tsunami and tsunamigenic earthquakes in subduction zones. Pure Appl Geophys 154(3–4):467–483. https://doi.org/10.1007/s000240050240
Article
Google Scholar
Sathiakumar S, Barbot SD, Agram P (2017) Extending resolution of fault slip with geodetic networks through optimal network design. J Geophys Res. https://doi.org/10.1002/2017JB014326
Article
Google Scholar
Sathiakumar S, Barbot S, Hubbard J (2020) Seismic cycles in fault-bend folds. J Geophys Res. https://doi.org/10.1029/2019JB018557
Article
Google Scholar
Sato M, Ishikawa T, Ujihara N, Yoshida S, Fujita M, Mochizuki M, Asada A (2011) Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake. Science 332(6036):1395. https://doi.org/10.1126/science.1207401
Article
Google Scholar
Satriano C, Dionicio V, Miyake H, Uchida N, Vilotte J-P, Bernard P (2014) Structural and thermal control of seismic activity and megathrust rupture dynamics in subduction zones: lessons from the Mw 9.0, Tohoku earthquake. Earth Planet Sci Lett 403(2011):287–298. https://doi.org/10.1016/j.epsl.2014.06.037
Article
Google Scholar
Scholz CH (1998) Earthquakes and friction laws. Nature 391:37–42. https://doi.org/10.1038/34097
Article
Google Scholar
Sella GF, Dixon TH, Mao A (2002) REVEL: a model for recent plate velocities from space geodesy. J Geophys Res 107(B4):ETG-11. https://doi.org/10.1029/2000JB000033
Article
Google Scholar
Seno T, Shimazaki K, Somerville P, Sudo K, Eguchi T (1980) Rupture process of the Miyagi-Oki, Japan, earthquake of June 12, 1978. Phys Earth Planet Int 23(1):39–61. https://doi.org/10.1016/0031-9201(80)90081-3
Article
Google Scholar
Shi Q, Barbot S, Shibazaki B, Matsuzawa T, Wei S, Tapponnier P (2020) Structural control and system-level behavior of the seismic cycle at the Nankai trough. Earth Planets Space 72(1):1–31. https://doi.org/10.1186/s40623-020-1145-0
Article
Google Scholar
Shibazaki B, Matsuzawa T, Tsutsumi A (2011) 3D modeling of the cycle of a great Tohoku-oki earthquake, considering frictional behavior at low to high slip velocities. Geophys Res Lett. https://doi.org/10.1029/2011GL049308
Article
Google Scholar
Shibazaki B, Noda H, Ikari MJ (2019) Quasi-dynamic 3D modeling of the generation and afterslip of a Tohoku-oki earthquake considering thermal pressurization and frictional properties of the shallow plate boundary. Pure Appl Geophys 1:1–23. https://doi.org/10.1007/s00024-018-02089-w
Article
Google Scholar
Shimizu I (2014) Rheological profile across the NE Japan interplate megathrust in the source region of the 2011 M w 9.0 Tohoku-oki earthquake. Earth Planets Space 66(1):73. https://doi.org/10.1186/1880-5981-66-73
Article
Google Scholar
Sieh K et al (2008) Earthquake supercycles inferred from sea-level changes recorded in the corals of West Sumatra. Science 322:1674–1678. https://doi.org/10.1126/science.1163589
Article
Google Scholar
Sleep NH (2006) Real contacts and evolution laws for rate and state friction. Geochem Geophys Geosyst. https://doi.org/10.1029/2005GC001187
Article
Google Scholar
Sobolev SV, Muldashev IA (2017) Modeling seismic cycles of great megathrust earthquakes across the scales with focus at postseismic phase. Geochem Geophys Geosyst 18(12):4387–4408. https://doi.org/10.1002/2017GC007230
Article
Google Scholar
Sone H, Shimamoto T, Moore DE (2012) Frictional properties of saponite-rich gouge from a serpentinite-bearing fault zone along the Gokasho-Arashima Tectonic Line, Central Japan. J Struct Geol 38:172–182. https://doi.org/10.1016/j.jsg.2011.09.007
Article
Google Scholar
Stein CA, Stein S (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359(6391):123. https://doi.org/10.1038/359123a0
Article
Google Scholar
Sugioka H et al (2012) Tsunamigenic potential of the shallow subduction plate boundary inferred from slow seismic slip. Nat Geosci 5(6):414. https://doi.org/10.1038/ngeo1466
Article
Google Scholar
Suito H (2017) Importance of rheological heterogeneity for interpreting viscoelastic relaxation caused by the 2011 Tohoku-oki earthquake. Earth Planets Space 69(1):21. https://doi.org/10.1186/s40623-017-0611-9
Article
Google Scholar
Sun T et al (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake. Nature 514:84–87. https://doi.org/10.1038/nature13778
Article
Google Scholar
Sun T, Wang K, Fujiwara T, Kodaira S, He J (2017) Large fault slip peaking at trench in the 2011 Tohoku-oki earthquake. Nat Commun 8(14):044. https://doi.org/10.1038/ncomms14044
Article
Google Scholar
Syracuse EM, Abers GA (2006) Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem Geophys Geosyst. https://doi.org/10.1029/2005GC001045
Article
Google Scholar
Taira A, Ohara Y, Wallis S, Ishiwatari A, Iryu Y (2016) Geological evolution of Japan: an overview, The Geology of Japan. In: Moreno T, Wallis SR, Kojima T, Gibbons W (eds), pp 1–24
Tajima F, Mori J, Kennett BL (2013) A review of the 2011 Tohoku-Oki earthquake (Mw 9.0): large-scale rupture across heterogeneous plate coupling. Tectonophysics 586:15–34. https://doi.org/10.1016/j.tecto.2012.09.014
Article
Google Scholar
Takahashi M, Uehara S-I, Mizoguchi K, Shimizu I, Okazaki K, Masuda K (2011) On the transient response of serpentine (antigorite) gouge to stepwise changes in slip velocity under high-temperature conditions. J Geophys Res 116(B10):2011. https://doi.org/10.1029/2010JB008062
Article
Google Scholar
Tang C-H, Hsu Y-J, Barbot S, Moore JDP, Chang W-L (1999) Lower-crustal rheology and thermal gradient in the Taiwan orogenic belt illuminated by the Chi-Chi earthquake. Nat Commun 5(2):2019. https://doi.org/10.1126/sciadv.aav3287
Article
Google Scholar
Tesei T, Collettini C, Carpenter BM, Viti C, Marone C (2012) Frictional strength and healing behavior of phyllosilicate-rich faults. J Geophys Res. https://doi.org/10.1029/2012JB009204
Article
Google Scholar
Tesei T, Lacroix B, Collettini C (2015) Fault strength in thin-skinned tectonic wedges across the smectite-illite transition: constraints from friction experiments and critical tapers. Geology 43(10):923–926. https://doi.org/10.1130/G36978.1
Article
Google Scholar
Toh A, Obana K, Araki E (2018) Distribution of very low frequency earthquakes in the Nankai accretionary prism influenced by a subducting-ridge. Earth Planet Sci Lett 482:342–356. https://doi.org/10.1016/j.epsl.2017.10.062
Article
Google Scholar
Tomita F, Kido M, Osada Y, Hino R, Ohta Y, Iinuma T (2015) First measurement of the displacement rate of the Pacific plate near the Japan trench after the 2011 Tohoku-oki earthquake using gps/acoustic technique. Geophys Res Lett 42(20):8391–8397. https://doi.org/10.1002/2015GL065746
Article
Google Scholar
Tomita F, Kido M, Ohta Y, Iinuma T, Hino R (2017) Along-trench variation in seafloor displacements after the 2011 Tohoku earthquake. Sci Adv 3(7):e1700113. https://doi.org/10.1126/sciadv.1700113
Article
Google Scholar
Tsang LL, Hill EM, Barbot S, Qiu Q, Feng L, Hermawan I, Banerjee P, Natawidjaja DH (2016) Afterslip following the 2007 Mw 8.4 Bengkulu earthquake in Sumatra loaded the 2010 Mw 7.8 Mentawai tsunami earthquake rupture zone. J Geophys Res 121(12):9034–9049. https://doi.org/10.1002/2016JB013432
Article
Google Scholar
Tsuji T, Ito Y, Kido M, Osada Y, Fujimoto H, Ashi J, Kinoshita M, Matsuoka T (2011) Potential tsunamigenic faults of the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63(7):58. https://doi.org/10.5047/eps.2011.05.028
Article
Google Scholar
Uchida N, Iinuma T, Nadeau RM, Bürgmann R, Hino R (2016) Periodic slow slip triggers megathrust zone earthquakes in northeastern Japan. Science 351(6272):488–492. https://doi.org/10.1126/science.aad3108
Article
Google Scholar
Umino N, Kono T, Okada T, Nakajima J, Matsuzawa T, Uchida N, Hasegawa A, Tamura Y, Aoki G (2006) Revisiting the three M-7 Miyagi-oki earthquakes in the 1930s : possible seismogenic slip on asperities that were re-ruptured during the 1978 M= 7.4 Miyagi-oki earthquake. Earth Planets Space 58(12):1587–1592. https://doi.org/10.1186/BF03352666
Article
Google Scholar
Usami K, Ikehara K, Kanamatsu T, McHugh CM (2018) Supercycle in great earthquake recurrence along the Japan Trench over the last 4000 years. Geosci Lett 5(1):11. https://doi.org/10.1186/s40562-018-0110-2
Article
Google Scholar
Wada I, Wang K (2009) Common depth of slab-mantle decoupling: reconciling diversity and uniformity of subduction zones. Geochem Geophys Geosyst. https://doi.org/10.1029/2009GC002570
Article
Google Scholar
Wakita K (2013) Geology and tectonics of Japanese islands: a review-the key to understanding the geology of Asia. J Asian Earth Sci 72:75–87. https://doi.org/10.1016/j.jseaes.2012.04.014
Article
Google Scholar
Wang Z, Zhao D, Liu X, Chen C, Li X (2017) P and S wave attenuation tomography of the Japan subduction zone. Geochem Geophys Geosyst 18(4):1688–1710. https://doi.org/10.1002/2017GC006800
Article
Google Scholar
Watanabe S-I, Sato M, Fujita M, Ishikawa T, Yokota Y, Ujihara N, Asada A (2014) Evidence of viscoelastic deformation following the 2011 Tohoku-Oki earthquake revealed from seafloor geodetic observation. Geophys Res Lett 41(16):5789–5796. https://doi.org/10.1002/2014GL061134
Article
Google Scholar
Weiss JR et al (2019) Anatomy of the postseismic deformation following the 2010 Mw = 8.8 Maule earthquake in Chile. Sci Adv. https://doi.org/10.1126/sciadv.aax6720
Article
Google Scholar
Wu Y, Chen X (2014) The scale-dependent slip pattern for a uniform fault model obeying the rate-and state-dependent friction law. J Geophys Res 119(6):4890–4906. https://doi.org/10.1002/2013JB010779
Article
Google Scholar
Yaginuma T, Okada T, Yagi Y, Matsuzawa T, Umino N, Hasegawa A (2006) Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms. Earth Planets Space 58(12):1549–1554. https://doi.org/10.1186/BF03352659
Article
Google Scholar
Yamamoto Y, Hino R, Nishino M, Yamada T, Kanazawa T, Hashimoto T, Aoki G (2006) Three-dimensional seismic velocity structure around the focal area of the (1978) Miyagi-oki earthquake. Geophys Res Lett. https://doi.org/10.1029/2005GL025619
Article
Google Scholar
Yamanaka Y, Kikuchi M (2004) Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data. J Geophys Res 109(B07307):14. https://doi.org/10.1029/2003JB002683
Article
Google Scholar
Yamashita Y et al (2015) Migrating tremor off southern Kyushu as evidence for slow slip of a shallow subduction interface. Science 348(6235):676–679. https://doi.org/10.1126/science.aaa4242
Article
Google Scholar
Yokota Y, Ishikawa T, Watanabe S-I, Tashiro T, Asada A (2016) Seafloor geodetic constraints on interplate coupling of the Nankai trough megathrust zone. Nature 534(7607):374
Article
Google Scholar
Zhao D (2015) The 2011 Tohoku earthquake (Mw 9.0) sequence and subduction dynamics in Western Pacific and East Asia. J Asian Earth Sci 98:26–49. https://doi.org/10.1016/j.jseaes.2014.10.022
Article
Google Scholar
Zhao D, Kitagawa H, Toyokuni G (2015) A water wall in the Tohoku forearc causing large crustal earthquakes. Geophys J Int 200(1):149–172. https://doi.org/10.1093/gji/ggu381
Article
Google Scholar